
Devoir maison no 11 bis
À rendre le ? ? ?

L’usage de toute calculatrice est interdit.
Les problèmes sont indépendants et peuvent être traités dans un ordre quelconque. Le candidat composera sur

des copies séparées pour chaque problème, et veillera à les identifier de façon claire.
Le correcteur sera particulièrement attentif à la clarté, à la rigueur et à la concision des raisonnement proposés.
Tous les résultats demandés seront encadrés.

Définitions et notations

Dans tout le problème, nous utiliserons les notations suivantes.

— N représente l’ensemble des entiers naturels et on note N
∗ = N\{0}, ensemble des entiers naturels non nuls ;

Z est l’ensemble des entiers relatifs ;R est l’ensemble des nombres réels, R+l’ensemble des réels positifs ; C
est l’ensemble des nombres complexes.

— Si p, q sont des entiers tels que p 6 q, on notera Jp; qK = {p, p+1, . . . , q} l’ensemble des entiers compris entre
p et q inclus.

— Si X est une variable aléatoire, on notera E(X) son espérance.

— On note Mn(R) (resp. Mn(C) ) l’ensemble des matrices carrées d’ordre n à coefficients dans R (resp. C

) et GLn(R) (resp. GLn(C) ) l’ensemble des matrices inversibles de Mn(R) (resp. de Mn(C) ). On note
Mn1(R) l’ensemble des vecteurs colonne de taille n. Un vecteur colonne sera parfois noté (z1z2 · · · zn)

T pour
des besoins de mise en page. Enfin, diag (λ1, . . . , λn) représente la matrice diagonale dont les coefficients
diagonaux sont λ1, . . . , λn.

Théorèmes utiles

— Si
f : [0; 1] × R −→ R

(x, t) 7−→ f(x, t)
est une fonction continue de deux variables, dérivable par rapport à t et si

∂f

∂t
est une fonction continue par rapport à x et t, alors la fonction t 7−→

1
∫

0

f(x, t)dx est de classe C
1 et,

pour tout t ∈ R :

d

dt

1
∫

0

f(x, t)dx =

1
∫

0

∂f

∂t
(x, t)dx.

— si f est de classe C
k sur [a; b], alors pour tout ε ∈ [0; b− a], il existe c ∈]0; ε[ tel que

f(a+ ε) = f(a) +

k−1
∑

i=1

εi

i!
f (i)(a) +

εk

k!
f (k)(c)

— Soient A(t) =
+∞
∑

n=0

ant
n et B(t) =

+∞
∑

n=0

bnt
n deux sommes de séries qui convergent pour tout réel de ]− R;R[

où R est un réel supérieur ou égal à 1. On définit la suite (cn)n∈N par

∀n ∈ N cn =

n
∑

i=0

aibn−i

Alors la série
∑

cnt
n converge pour tout réel t ∈]−R;R[ et, de plus,

∀t ∈]−R;R[ C(t) =

+∞
∑

n=0

cnt
n = A(t)B(t).
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La suite c = (cn)n∈N est appelée convolée (ou produit de convolution) de a et b, et on la note c = a ∗ b.
On donne le tableau de quelques valeurs de la fonction t 7−→ e−t :

t 1 2 3 4 5 6
e−t 0,37 0,14 5, 0 · 10−2 1, 8 · 10−2 6, 7 · 10−3 2, 5 · 10−3

t 7 8 9 10 11 12
e−t 9, 1 · 10−4 3, 4 · 10−4 1, 2 · 10−4 4, 5 · 10−5 1, 7 · 10−5 6, 1 · 10−6

Premier problème : équation de diffusion

Soit g : [0; 1] −→ R
+une fonction positive, continue, et telle que

1
∫

0

g(x)dx = 1.

On s’intéresse à une fonction f : [0; 1]×R
+ → R, dépendant de deux variables x et t, vérifiant l’équation différentielle

suivante, appelée équation de diffusion :

∀(x, t) ∈ [0; 1] × R
+ ∂2f

∂x2
(x, t)− α

∂f

∂t
(x, t) = 0 (E)

où α > 0 est une constante, ainsi que la condition initiale

∀x ∈ [0; 1] f(x, 0) = g(x) (CI)

et les conditions au bord

∂f

∂x
(0, t) =

∂f

∂x
(1, t) = 0 ∀t > 0. (CB)

Cette équation permet notamment d’étudier la diffusion de la chaleur, ou bien la diffusion d’une substance
dans un milieu : on suppose qu’à t = 0, la substance a une densité g sur [0; 1] ; la fonction x 7−→ f(x, t) représente
alors la densité de cette substance à l’instant t.

1. Montrer que, pour tout t ∈ R
+,

1
∫

0

f(x, t)dt = 1. Interpréter ce résultat.

2. On se propose de remplacer l’étude de l’équation (E) - qui fait intervenir des dérivées partielles - par l’étude
d’un système différentiel - ne faisant intervenir que des équations différentielles ordinaires -, qui approche le
problème précédent ; c’est ce qu’on appelle la discrétisation.

Pour cela, on choisit un entier naturel n > 2, et on pose

∆ =
1

n+ 1
et xk = k∆ pour k ∈ {0, . . . , n + 1}

On remplace l’équation (E) par le système

∀k ∈ J1;nK
f (xk+1, t)− 2f (xk, t) + f (xk−1, t)

∆2
− α

∂f

∂t
(xk, t) = 0.

Pour des facilités d’écriture, on posera Y(t) = (y1(t) · · · yn(t))
T et on étudiera le système d’équations diffé-

rentielles

∀k ∈ J1;nK
yk+1(t)− 2yk(t) + yk−1(t)

∆2
− αy′k(t) = 0. (′)

De plus, la condition aux bords (CB) sera remplacée par

∀t ∈ R
+ y0(t) = y1(t) et yn+1(t) = yn(t), (CB’)

et on supposera que
n
∑

k=1

yk(0) = 1.
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a) Montrer que le système ( E′ ) assorti de sa condition aux bords ( CB′ ) peut se mettre sous la forme

Y′(t) =
1

α∆2
AY(t)

Expliciter la matrice A.

b) Montrer que la quantité
n
∑

k=1

yk(t) est constante par rapport au temps. Interpréter.

3. Montrer que 0 est valeur propre de A . En déduire toutes les solutions stationnaires du problème, c’est-à-dire
les fonctions vectorielles t 7−→ Y(t) constantes par rapport au temps.

4. On cherche à encadrer les valeurs propres de la matrice A .

a) Rappeler pourquoi A est diagonalisable.

b) On note Sp(A) l’ensemble des valeurs propres de A .
Montrer que Sp(A) ⊂ [−4; 0].
Indication : On pourra choisir un vecteur propre Z = (z1z2 · · · zn)

T ∈ Mn1(R) associé à une valeur
propre λ.

5. a) On note P ∈ GLn(R) une matrice inversible telle que P−1AP est une matrice diagonale dont les
coefficients diagonaux seront notés λ1, . . . , λn, classés dans l’ordre décroissant.
Que vaut λ1 ? Comparer λ2 et 0 .

b) On note W(t) = P−1Y(t). Que vaut W′(t) ? En déduire lim
t→+∞

W(t).

c) En déduire que lim
t→+∞

Y(t) existe et appartient à un certain sous-espace propre que l’on déterminera.

En déduire la valeur de lim
t→+∞

Y(t). Interpréter ce résultat.

6. Exemple. Dans cette question uniquement, on prend n = 3 et α = 4.

a) Écrire la matrice A . Trouver une matrice P ∈ GL3(R) telle que P−1AP = diag(0,−1,−3).

b) La condition initiale est donnée par Y(0) =





1
0
0



.

Calculer W(0), puis W(t) et Y(t) pour tout t ∈ R
+. Tracer l’allure des courbes t 7→ y1(t), t 7→ y2(t) et

t 7→ y3(t).

c) À partir de quelle valeur de t peut-on être sûr que la solution que nous venons de calculer atteint sa
valeur limite avec une marge d’erreur de 10−5 ?

7. Évaluation de l’erreur commise. On suppose que, pour tout t ∈ R
+, la fonction x 7−→ f(x, t) est de

classe C
4. Montrer qu’il existe une fonction t 7−→ M(t), telle que

∀k ∈ {1, 2, . . . , n}

∣

∣

∣

∣

f (xk+1, t)− 2f (xk, t) + f (xk−1, t)

∆2
− f ′′ (xk, t)

∣

∣

∣

∣

6
M(t)

(n+ 1)2

La fonction t 7−→ M(t) dépend-elle de n ? Commenter.

8. Quels commentaires, remarques, critiques, pouvez-vous faire sur la méthode employée ?

Deuxième problème : détérioration d’une séquence génétique

On modélise une séquence génétique par une succession de sites, indicés par N ou par Z. Pour chaque entier
n, le site n pourra subir ou non une détérioration (mutation). On définit alors la variable aléatoire Xn en posant
Xn = 1 en cas de détérioration du site n, et Xn = 0 dans le cas contraire.

Dans les parties A,B et C, nous considérerons des mutations ponctuelles, c’est-à-dire que (Xn)n∈N sera une
suite de variables indépendantes identiquement distribuées, suivant une loi de Bernoulli.

Dans la partie D , nous considérerons le cas des recombinaisons, où des segments entiers, de longueur aléatoire,
sont détériorés.

Nous considérons maintenant un événement, noté E , qui peut se produire à chaque site. On dira que cet
événement est régénératif si et seulement si il vérifie la propriété suivante : les distances entre les occurrences
successives de l’événement E sont des variables aléatoires mutuellement indépendantes et de même loi.
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A Étude d’un événement régénératif : quelques relations fondamentales

Dans cette partie, la séquence génétique est indicée par N
∗ = {1, 2, 3, . . .}.

Soit p ∈]0; 1[. Soit (Xn)n∈N∗ une suite de variables aléatoires indépendantes et de même loi :

P (Xn = 1) = p et P (Xn = 0) = q = 1− p

L’événement Xn = 1 correspond à la détérioration du site n et l’événement Xn = 0 correspond à la non-
détérioration de ce site.

1. Exemple : On définit dans cette question l’événement E par : E a lieu au site n si et seulement si Xn = 1.
Montrer que E est régénératif.

Bien sûr, d’autres événements régénératifs peuvent être envisagés, comme par exemple la répétition d’un motif
non recouvrant (cf. partie C ).

Soit E un événement régénératif quelconque.
Pour tout n ∈ N

∗, notons an la probabilité que l’événement E ait lieu au n-ième site, et bn la probabilité qu’il ait
lieu pour la première fois au n-ième site :

{

an = P{E a lieu au site n}
bn = P{E a lieu pour la première fois au site n}

(I)

De plus, définissons par commodité a0 = 1 et b0 = 0. Ainsi, on supposera implicitement que E a lieu au site
n = 0 (on ne cherchera pas de signification à cette hypothèse).

Enfin, posons

A(x) =

+∞
∑

n=0

anx
n B(x) =

+∞
∑

n=0

bnx
n b =

+∞
∑

n=0

bn = B(1). (2)

2. On note D la variable aléatoire exprimant la distance de la première occurrence de l’événement E (cette
distance pouvant être +∞ si l’événement E n’a pas lieu). On notera que, grâce à notre hypothèse sur a0, D
représente également la distance entre deux occurrences successives de l’événement E .

Expliciter la loi de D.
Que représente le nombre 1− b en terme d’occurrences de l’événement E ?
Si b = 1, on dira que l’événement est récurrent.

3. On note b(2)n la probabilité que E ait lieu pour la deuxième fois au n-ième site, et on définit

B(2)(x) =
+∞
∑

n=0

b(2)n xn.

Calculer, pour tout entier n ∈ N, le coefficient b(2)n en fonction de b1, b2, . . . , bn−1.

Écrire alors b(2) =
(

b(2)n

)

n∈N
sous la forme d’un produit de convolution.

En déduire B(2).

4. Montrer que, pour tout n ∈ N
∗, on a an = (b ∗ a)n, c’est-à-dire que an =

n
∑

k=0

bkan−k.

5. Montrer que A(x) =
1

1− B(x)
pour tout x ∈ [0; 1[.
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B Occurrence de sous-séquences entièrement détériorées

Soit K un entier naturel. On s’intéresse, dans la séquence des sites, aux occurrences de sous-séquences non
recouvrantes de K sites détériorés. Plus précisément, on dira que l’événement E a lieu au site n si les sites
n−K+1 à n sont détériorés et si E n’a pas eu lieu aux sites n−K+1 à n : ainsi, en représentant une détérioration
par un « 1 » et un site sain par un « 0 », dans la séquence suivante

10111101111111010,

a-t-on des suites de 3 détériorations aux sites 5 , 10 et 13 (mais pas, par exemple, aux sites 6,11 ou 12 ).

6. Montrer que E est régénératif.
On emploiera les notations introduites aux équations (1) et (2).

7. Soit n ∈ N tel que n > K.

a) Quelle est la probabilité d’avoir des sites détériorés aux rangs (n−K+ 1), . . . , n− 2, n − 1, n ?

b) En utilisant la formule des probabilités totales et en notant que, si les sites indexés n−K+ 1 à n, sont
détériorés, l’événement E a lieu à un et un seul de ces indices, trouver une relation entre an−K+1, . . . , an
et p.

c) Que valent a1, . . . , aK−1 ? On rappelle, pour la suite, que a0 = 1 par définition.

d) Montrer que

+∞
∑

n=K

pKxn =
(

1 + xp+ x2p2 + · · ·+ xK−1pK−1
)

+∞
∑

n=K

anx
n

8. En déduire les expressions de A(x) et de B(x).

9. Calculer b et commenter.

10. Montrer que la distance moyenne à l’origine de la première occurrence de E (c’est-à-dire E(D) ) vaut
1− pK

qpK
.

11. Quel est la distance moyenne de la première suite de 20 détériorations si p =
1

2
? Même question pour

p =
1

6
.

C Occurrence de sous-séquences en partie détériorées

On s’intéresse aux occurrences non recouvrantes de sous-séquences de longueur 4, détériorées selon le motif
suivant :

1101

On notera E
∗ l’événement correspondant, et A∗(x), a∗n, B(x), b∗n,D

∗ les quantités relatives à l’événement E
∗.

Exemple. Dans la séquence suivante :

0110110111010011001 · · ·

l’événement E a lieu aux sites 5 et 12 , mais pas au site 8 .

12. Montrer que E
∗ est régénératif.

13. Soit n ∈ N tel que n > 4.
a) Quelle est la probabilité d’avoir le motif « 1101 » aux sites n− 3, n− 2, n − 1 et n ?

b) En remarquant que, si le motif « 1101 » a lieu aux sites n− 3, n− 2, n− 1 et n, l’événement E a lieu à
un et un seul de ces sites, montrer que p3q = an + an−3p

2q pour tout n > 4.
14. Déduire de ce qui précède l’expression de A∗(x).

15. Calculer alors B∗(x). Montrer que b∗ = B∗(1) = 1.

16. Calculer E (D∗).

17. Comparer les espérances de D et de D∗ dans le cas K = 4, p =
1

10
.

Effectuer de même la comparaison dans le cas où p =
1

2
, et commenter.
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D Généralisation à la recombinaison

On modélise dans cette partie une séquence génétique par une succession de sites indicés par un entier relatif
n ∈ Z. On s’intéresse maintenant à la détérioration de cette séquence par un processus de recombinaison. À
chaque site n, successivement, peut avoir lieu une recombinaison, qui détériore un segment, de taille aléatoire, dont
l’extrémité droite est n. En d’autres termes, on a le processus suivant :

— à chaque site n ∈ Z, une recombinaison a lieu avec la probabilité 1− α0 ;

— cette recombinaison résulte en la détérioration du site n seulement avec la probabilité α1 ;

— pour tout i ∈ N
∗, elle résulte en la détérioration des sites n − i + 1, n − i + 2, · · · , n avec la probabilité αi ;

les réels αi appartenant à ]0; 1[ et vérifiant
+∞
∑

i=0

αi = 1.

Un site sera sain s’il n’a subi aucune détérioration. Un site détérioré plusieurs fois reste détérioré.

18. Préliminaires

a) Soit (un)n∈N une suite de réels positifs tels que 0 6 un < 1 pour tout n ∈ N. On pose, pour tout entier

n,Pn =
n
∏

k=0

(1− uk). Montrer que la suite (Pn)n∈N converge et que sa limite ℓ appartient à [0; 1]. On

dira alors que le produit infini
+∞
∏

k=0

(1− uk) converge et on écrira

+∞
∏

k=0

(1− uk) = ℓ

b) Montrer que la série
∑

ln (1− un) converge si et seulement si la série
∑

un converge.

c) Donner une condition nécessaire et suffisante portant sur la série
∑

un pour que
+∞
∏

k=0

(1− uk) = 0.

d) Soit β > 0. En comparant
n
∑

k=1

1

kβ
et la l’intégrale

n
∫

1

1

tβ
dt, donner une condition nécessaire et suffisante

sur β pour que la série
∑ 1

nβ
converge.

19. Calculer, en fonction de (αn)n∈N, la probabilité qu’un site donné soit détérioré. Donner une condition né-
cessaire et suffisante pour que cette probabilité soit égale à 1 en fonction de (Rn)n∈N, puis en fonction de
(αn)n∈N.

On pourra utiliser les notations suivantes :

Sn =
n
∑

k=0

αk Rn = 1− Sn =
+∞
∑

k=n+1

αk

20. Cette probabilité vaut-elle 1 ou non dans les cas suivants ?

a) la longueur de la séquence détériorée à chaque recombinaison suit une loi de Poisson de paramètre

λ ∈ R
+, c’est-à-dire que αk =

λk

k!
e−λ ;

b) elle suit la loi donnée par αk = (1− γ)γk, où γ ∈]0; 1[ ;

c) elle suit la loi donnée par αk =
1

(k + 1)(k + 2)
(on vérifiera au préalable que la suite (αn)n∈N définit

bien une loi de probabilité).
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