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Dans tout le chapitre (€2, .7, P) désigne un espace probabilisé. Cet espace peut, s’il n’y a pas plus de
précision, étre fini ou infini.

I Loi, fonction de répartition

Définition 1
Soit X une variable aléatoire définie sur €2.
— On dit que X est une variable aléatoire réelle finie lorsque X (£2) est un ensemble fini.
— On dit que X est une variable aléatoire réelle discréte lorsque X (2) est un ensemble dénom-
brable, c¢’est-a-dire qu’il peut s’écrire sous la forme :

X(Q) ={x,/neN} ouX(Q)={z,/neNetn=n}.

Remarque :
Certaines personnes considérent que les variables finies sont aussi des variables discrétes.

Exemple 1 :

Un joueur lance deux fois de suite un dé cubique équilibré et note les deux nombres obtenus sous la
forme d’un couple : par exemple si le joueur obtient 2 puis 5, on note son résultat sous la forme (2,5).
L’univers de notre expérience est Q = [1;6] x [1;6].

On définit la variable aléatoire réelle X qui, a chaque couple, associe la somme des deux nombres
obtenus. Ici, on a X (2) ={2,3,...,12}. Donc X est une variable aléatoire réelle finie.

Dans cet exemple, on a

[X = 2] = {(1’ 1)}’ [X = 4] = {(1’3)’ (2’2)’ (3’ 1)}’

[X <5 ={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2), (4, 1)}
Dans de nombreux exercices, on utilisera plutét des notations du type Ay : « obtenir k£ au premier lancers » et
B;. : « obtenir k£ au deuxiéme lancer », et on écrira alors les événements précédents sous la forme :

[X:2] = AN By, [X:4] = (AlﬂBg) (AQHBQ) (AgﬂBl),
4 5—1
(X <5]= (AinB;) =J | J@inBy).
(4,7)€X(Q)2,i+5<5 i=1j=1

Ezxemple 2 :

On effectue une succession de lancers indépendants d’un dé cubique équilibré jusqu’a obtenir pour la
premiére fois un 6.

On considére la VAR X qui renvoie le numéro du lancer pour lequel on obtient 6 pour la premiére fois.

L’univers de notre expérience est 'ensemble de toutes les issues possibles de cette succession de lancers,
ce qui n’est pas trés agréable a décrire. La plupart des exercices ne demanderont pas d’expliciter ['univers
de [’expérience.

On a ici X(2) = N* et donc X est une variable aléatoire réelle discreéte.

Dans cet exemple, si on note Sj, désigne I’événement « obtenir 6 au k™€ lancer », on peut écrire

[X =4] = 51N SN S3N 8y,
(X <3]=51USUS3=(S1)U(51NS2)U(S5NS2NS8s),

VneN, [X<n]=]S%=5UENS)uU...u(SiN...N5, 1NS,),

k=1
+00 +oo
. S; >2
=S =5Nn%n%N5, WneN, [Xzn=|]S%= Zﬂl o
- Q sin=1
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1 Loi d’une VAR discréte ou finie

Définition 2
On appelle loi de probabilité de la variable aléatoire réelle discréte ou finie X la fonction fx définie

par :
fX: X(Q) — R

Conseils méthodologiques :
Lorsque vous devez répondre a la question « déterminer la loi de X », il faut commencer par donner

clairement X (€2). Puis pour chaque élément x de cet ensemble X (£2), il faut donner P(X = z).
Lorsque X (2) est fini et ne contient « pas trop » d’éléments, on peut présenter les résultats sous forme
de tableau avec dans la premiére ligne les valeurs de x et dans la deuxiéme ligne P(X = x).

Exemple 3 :

On reprend 'exemple 2 : on lance un dé cubique équilibré jusqu’a obtenir le premier 6 et X désigne le
numéro du lancer pour lequel on obtient 6 pour la premiére fois. On souhaite donner la loi de X.

Nous avons vu que X (€2) = N*. Il faut maintenant calculer P(X = n) pour chaque élément n € X ().

Il est impossible de donner une par une ces probabilités car il y en a une infinité a calculer.

On va donc donner une formule pour calculer P(X = n) pour n quelconque dans N*.

On commence pour cela par expliciter I'événement [X = n]. Afin de faciliter les explications, on reprend
la notation Sj : « obtenir 6 au k°™¢ lancer ».

On peut alors écrire [X =n] =5, N...NS,_;1 NS, et d’aprés la formule des probabilités composées,
on a :

5 A 5\"' 1
P(X = TL) =P (Sl) X P?l(SQ) X ... X PSTﬂﬂm (Sn—l) X PEﬂﬂﬂ (Sn) = (6) X 6

5\ 1
En conclusion, X (€2) = N* et pour tout n € N*, P(X =n) = <—) X5

Propriété 1
Soit X une VAR discréte ou finie.
La famille d’événements ([X = z])zecx() est un systéme complet d’événements.

Conseils méthodologiques :
— Cette propriété permet de vérifier la cohérence de vos résultats lorsque vous donnez la loi de X :

on doit toujours avoir Z P(X=x)=1.
xeX(Q)
— Comme ([X = z])sex() est un systéme complet d’événements, on peut appliquer la formule des
probabilité totale pour n’importe quel événement A :

P(A)= Y P(X=2)Px_g(d)= ) P(X=z]nA).
zeX(Q) zeX(Q)

Ezxemple 4 :
Reprenons 'exemple précédent et vérifions la cohérence de notre résultat.

S o /5\"" 1 1 1
On a ZP(X =n)= Z (—) X — ==X = 1. Notre loi est bien cohérente.
n=1

6 6 6 1-—

ot

n=1
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Exemple 5 :

On reprend de nouveau notre expérience de lancer de dé. On dispose aussi d’une infinité d’urnes

appelées Uy, Uy, Us, .. telles que I'urne U; contient 1 jeton blanc et 2° — 1 jetons rouges.

Apreés avoir effectué nos lancers de dés on choisit au hasard un jeton dans 'urne correspondant au
nombre de lancers nécessaires pour obtenir notre premier six : par exemple, si le premier six est apparu

au cinquiéme lancer on choisit au hasard un jeton dans I'urne Us.
Quelle est la probabilité de ’événement B « obtenir un jeton blanc » 7

La famille ([X = n|),en+ est un systéme complet d’événements. D’aprés la formule des probabilités

totales :

400
P(B) = P(X = n)Px—(B)

+001 5 n—1 1
=2.5l5) =

=1

5 1

2 1-2

3

X

= o =

Théoréme 1 : Caractérisation de la loi d’une variable aléatoire réelle discréte

Soit {(2,,pn)/n € N} une partie de R% Si pour tout n € N, p,
+oo

=0
pn

= 0 et si an est convergente et

an = 1, alors il existe une VAR discréte X telle que X(Q2) = {z,/n € N} et Vn e N, P(X =uz,) =

Conseils méthodologiques :

correspondent a la loi d’une variable aléatoire réelle discréte.

Ce théoréme permet, lorsqu’on vous donne des valeurs pour p, et x,, de déterminer si ces valeurs

Exemple 6 :
Pour une variable aléatoire réelle X telle que X (€2)

= 2\ {0;
P(X =n)=

—1}, on pose :
1

Vérifions que ceci définit bien une loi de probabilité pour X.

— Pour tout n € Z\ {0; —1}, n et n + 1 sont de méme signe donc on a bien P(X =n) > 0.

— Il faut maintenant montrer que Z P(X = n) est convergente et vaut 1.
neXx(Q)
400
n) et Z P(X =-—
n=2
N

1 1
O - - — t’l .
na 22,” n+ 1 Z <2n n+ 1)) 2 2(N+ 1), par eeSCOpage

On va calculer séparément Z P(X =

n=1

+o0

1
Donc E P(X ) est convergente et E P(X=n)=-.
n=1 g n=1 ) 2
N
1 1 1 1 )
De méme E T 1) E_ <—% + m) = 3 ON par télescopage.

+o0
Donc ZP(X = —n) est convergente et Z P(X =-n)=

n=2 n=2

DO | —
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En conclusion Z P(X =n) est convergente et vaut 1.
neXx(Q)
On a bien une loi de probabilité pour X.

2 Fonction de répartition d’une VAR discréte ou finie

Propriété 2
La fonction de répartition d'une VAR discréte ou finie est une fonction en escalier.

Voyons cela sur un exemple :

Exemple 7 :
On considére toujours notre exemple de lancers successifs d'un dé cubique équilibré et X la variable
aléatoire réelle égale au nombre de lancers nécessaires pour obtenir 6 pour la premiére fois.
Calculons plusieurs valeurs prises par Fix : Fx(—2), Fx(2,1), Fx(2,99).
— Par définition, Fx(—2) = P(X < —2) = 0 car I'événement [X < —2] est impossible.
On peut méme étendre cette remarque en écrivant que F'y () = 0 pour tout @ < 1 car lorsque o < 1,
I'événement [X < af est impossible.
— De plus, Fx(2,1) = P(X <2,1) = P([X =1]JU[X = 2]) car X prend des valeurs entiéres.

1 5 11
Comme les événements [X = 1] et [X = 2] sont incompatibles, Fx(2,1) = A + %= 36
11
Et on remarque alors que l'on a aussi Fx(2,99) = P([X =1]U[X =2]) = %

On peut, en fait, étendre ce résultat en écrivant que, pour § € [2; 3],

11
Fx(8) = P(X =1JU[X =2) = 12
— Et on peut encore étendre cela en écrivant que, pour tout v € [k; k + 1] (k € N¥),

Fx(v)=P(X =1U...U[X =Ek]).
0 six <1

En résumé, Fx(x) = b .
x(@) Y P(X=i) sik<z<k+l
=1

On voit bien sur cet exemple que la fonction F'x est une fonction en escalier.

Théoréme 2 : Loi d’une VAR discréte ou finie a partir de sa fonction de répartition

On suppose que X est une VAR discréte ou finie telle que X(Q2) = {z,/n € I} avec I C N et on
suppose que les x,, sont rangés par ordre croissant. Alors pour tout n € I tel que n—1 € I (on a donc
Tp_1 < Ty)ona:

P(X = l‘n) = Fx(l‘n) — Fx(ZL‘n_l).

Démonstration :

Il faut remarquer que [X < z,] = [X = x,] U[X < x,_1] car entre x,,_; et x, il n'y a pas de valeurs
prises par X.
De plus les événements [X = z,] et [X < z,,_1] sont incompatibles donc :

P(X<z,)=PX=u,)+PX<2,1) <= P(X =1, =F(x,) — F(x,_1).

Conseils méthodologiques :
L’utilisation la plus classique de ce théoréme est la détermination de la loi du maximum ou du minimum
de n variables aléatoires indépendantes.
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Exzemple 8 : Un classique !

On considére une urne contenant n jetons numérotés de 1 a n. On effectue N (NN est un entier non nul
fixé) tirages avec remise et, pour k € [1; N] on note X}, le numéro du jeton obtenu au k-iéme tirage.

On cherche la loi de la variable aléatoire T' = max (X1, Xo, ..., Xy).

On remarque tout d’abord que T'(Q2) = [[1; n].

I nous faut maintenant calculer P(T' = k) pour k € [1;n].

Une méthode classique consiste & commencer par calculer P(T' < k) pour ensuite en déduire la loi.

Les tirages étant effectués avec remise, les variables (X7, X, ..., Xy ) sont indépendantes.

De plus, pour k € [1;n],

([Xi <kN[Xy<EklN...N[Xy < k] c’est de la logique!
X X P(Xy < k) VAR indépendantes

On obtient alors la loi de T" en écrivant :
Pour k € [L;n], [T < k] =[T =k]U[T < k— 1], car T est a valeurs entiéres. Comme il s’agit d’une
union d’événements disjoints, on en déduit que

P(T<k)=P(T=k)+P(T<k—-1)&PT =k =PT<k)—PT<k-1).

— Donc, pour k € [2;n], P(T =k) = <E)N - <k_ 1)N.

n n

1
— Et P(T'=1) = P(T' < 1) = — (la formule précédente est donc encore valable pour k& = 1).
n
k

N 1\
En conclusion T'(2) = [1;n] et, pour k € [1;n], P(T =k) = (_) _ ( ) _

n n

I Moments d’une variables aléatoire discréte ou finie

1 Espérance

La définition de I'espérance d’'une VAR finie a été vue en sup et rappelée dans le chapitre « Concepts
de base sur les variables aléatoires ».
Définition 3 : Espérance d’'une VAR discréte

Soit X une VAR discréte.
On dit que X admet une espérance, ou que ’espérance de X existe, si, et seulement si, la série

Z xP(X = x) est absolument convergente.

zeX (w)
On appelle alors espérance de X, le réel E(X) = Z rP(X = z).
xeX(Q)
Remarques :

— FE(X) est une moyenne pondérée des valeurs prises par X.

— Lorsque X est une VAR finie, X admet forcément une espérance.

— On impose la convergence absolue de la série ZxP(X = z) afin que la valeur de 'espérance ne
dépende pas du choix de l'indexation des ¢léments de X (2).
On pourra toutefois noter que dans la grande majorité des exercices, X est une VAR a valeurs
positives donc la convergence absolue et la convergence sont équivalentes.
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Exemple 9 :
Reprenons une nouvelle fois 'exemple 2 de notre cours : X désigne le nombre de lancers d’un dé cubique
afin d’obtenir pour la premiére fois 6.

1 n—1
LaloideXest:X(Q):N*etVneN*,P(X:n)ZE<g) :

On sait que X admet une espérance si, et seulement si, la série Z nP(X = n) est absolument

neN*
convergente. Or, pour tout n € N*, nP(X = n) > 0 donc étudier la convergence ou la convergence absolue

revient au méme. (Phrase de rédaction type pour le calcul de l’espérance d’une VAR discréte)
Sous réserve de convergence :

B(X) = inP(X =n) = iné (g)n_l

Donc X admet une espérance et F(X) = 6.
Ce résultat signifie qu’en moyenne, on obtient un 6 pour la premiére fois au sixiéme lancer (on peut
remarquer que ce résultat serait le méme pour obtenir 1, 2,...).

Propriété 3
Soit X une VAR discréte ou finie telle que X () C [a;b] avec a et b deux réels fixés.
Alors X admet une espérance et a < F(X) < b.

Conseils méthodologiques :
— Cette propriété permet de vérifier la cohérence de votre résultat.
— En particulier si X ne prend que des valeurs positives, alors E(X) > 0.

Démonstration :

Comme on suppose que X (€2) C [a;b], on a donc, pour tout z € X(2), a < z < b.
— On pose alors M = max(|al, |b|). Cela nous permet d’écrire que, pour tout z € X(Q), |z| < M et
donc [zP(X =) < MP(X =z), car P(X =) > 0.
Or, on sait que Z P(X = x) est une série convergente, donc d’apreés le critére de majoration pour

les séries a termes positifs, E |xP(X = x)| est une série convergente, ce qui signifie que X admet
une espérance.
— On peut maintenant écrire :

a<r<b=aP(X = )<:EP(X:x)<bP(X:x) car P(X =x2)>0
= Z aP(X Z zP(X =1x) < Z bP(X somme d’inégalités
zeX(Q) zeX(Q) zeX ()
=a< E(X) <D car Z P(X=z)=1.
zeX(Q)
]
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Le théoreme suivant est extrémement important :

Théoréme 3 : Théoréme de transfert

Soit X une VAR discréte et soit g une fonction définie au moins sur X (2) et a valeurs dans R.

Alors la variable aléatoire réelle ¢(X) admet une espérance si, et seulement si, la série
Z g(x)P(X = z) est absolument convergente et dans ce cas, on a :

zeX(Q)

E(g(X))= Y g@)P(X =),

Remarque :
Il existe une version du théoréme de transfert pour les VAR finie dans votre cours de sup. La principale
différence vient du fait qu’il n’y a pas besoin de parler de convergence de série!

Exemple 10 :
Poursuivons 'exemple précédent et déterminons E(X?).

On sait que X? admet une espérance si, et seulement si, la série Z nQP(X = n) est absolument
neN*

+oo
convergente et dans ce cas F(X?) = Z n*P(X = n).
n=1

Or on remarque que, pour tout n éN*,

21 5 n—1 5 5 n—2 1 5 n—1
n = | = =—xnn-1)(= +-xn|= :
6 \6 36 6 6 6

On reconnait ici le terme général des séries dérivées premiére et seconde de la série géométrique de

raison —.
6

5 n—2 5 n—1
C <1,1 éri —1) (= t — t absol t tes.
omme , les series Zn(n ) < ) e Zn <6) sont absolument convergentes

n>1 6 n>1
Ainsi, X? admet une espérance, et on a :

5 +o0o 5 n—2 1 +oo 5 n—1
E(X?):%x n(n—1)(6) +6x2n(6)
n=1 n=1
5 2
= x—C 4t x——  _—60+6=06
36 (1-3)" 6 (1-2)

6

En conclusion, X admet un moment d’ordre 2 et E(X?) = 66.

2 Variance et écart type

Tous les résultats utiles sur la variance sont présents dans le chapitre « Concepts de base des variables
aléatoires »
FExemple 11 :

On considére la VAR X dont la loi est donnée par X (2) = N* et pour tout n € N* P(X =n) = —
—+00 1
avec A = Zﬁ
k=1

1
OnanP(X =n)= e donc Z |[nP(X = n)| est convergente et E(X) existe.
n

1
De plus n?P(X =n) = n donc Z In*P(X = n)| est divergente et E(X?) n’existe pas.
n

X n’admet donc pas de variance.
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Exemple 12 :
Reprenons encore notre lancer de dé jusqu’a obtenir 6 pour la premiére fois. Nous avons vu dans la
partie précédente que X? admet une espérance. Donc, d’aprés la formule de Koenig-Huygens, V(X)) existe

et
V(X) = EBE(X? — (E(X))? =66 — 36 = 30.

IIT  Lois usuelles

1 Lois usuelles finies (Rappels de sup)

a Lol uniforme

Définition 4
Soit n € N*. On dit que X suit la loi uniforme sur [1;n] si, et seulement si

X(Q) =[1;n] et Vke[l;n], P(X=k)= %

Remarque :
Lorsque X suit une loi uniforme, tous les événements [X = k] sont équiprobables. On peut ainsi étendre

cette notion de loi uniforme sur n’importe quel ensemble fini.
Propriété 4
1
Soit X une VAR qui suit la loi uniforme sur [1;n]. Alors : E(X) = n;_ :

Remarque :
La valeur de la variance est hors-programme.

b  Loi de Bernoulli (ou indicatrice d’événement)

Définition 5
On considére une expérience aléatoire e et A un événement lié a cette expérience. On définit alors la

variable aléatoire 1 4 égale a 1 si A est réalisé et 0 sinon.
La variable aléatoire 14 s’appelle ’indicatrice de A.

Remarque :
Onadonc P(Iy,=1)=P(A) et P(14,=0)=1— P(A).

Définition 6
Soit p € [0;1]. On dit qu’une VAR X suit la loi de Bernoulli de paramétre p si, et seulement si :
X(Q) ={0;1}, et P(X=1)=np.

On note X — A(p).

Remarque :
Si A est un événement, alors la variable aléatoire 1 4 suit la loi de Bernoulli de paramétre P(A).

Réciproquement, si X — %(p) alors X = 1x—_q).

Propriété 5
Si X suit une loi de Bernoulli de paramétre p alors

Cours BCPST2



¢ Loi binomiale (ou des tirages avec remise)

Mise en place :

On considére une expérience e et on considére un événement A lié a e tel que P(A) = p. On suppose
que 'on effectue n fois 'expérience e dans les mémes conditions (les expériences sont indépendantes) et
on considére X le nombre de fois ou A est réalisé au cours de ces n expériences identiques.

X prend donc les valeurs 0, 1, ..., n.

Soit k € [0;n]. On cherche a calculer P(X = k) c’est-a-dire la probabilité que A soit réalis¢ k fois

n

exactement. Parmi les n expériences, il y a I fagon de placer les k fois ot A est réalisé. Chacun de ces
n

( k) événement est réalisé avec la probabilité p*(1 — p)"~*.

Onadonc: P(X =k) = <Z)pk(1 —p)" k.

Définition 7
Soit p € [0;1] et n € N. On dit que la VAR X suit la loi binomiale de paramétres n et p si, et
seulement si :

X(Q)=A{0,1,...,n} =[0;n]

vk e [0;n] P(X =k) = (Z)pm — k.

On note X — %A(n,p).

Un VAR qui suit une loi binomiale est une VAR qui « compte le nombre de réalisation d’un événement
A de probabilité p au cours de n expériences identiques. »

Exemple 13 :
On procéde a n lancers d’'un dé équilibré dont les 6 faces sont numérotées de 1 a 6. On note X la
variable aléatoire égale au nombre de fois ol 'on obtient un numéro inférieur a 2. Quelle est la loi de X ?

On note A I’événement « obtenir un nombre inférieur a 2 ». On a ici P(A) = 3

X compte le nombre de réalisation de ’événement A au cours de n expériences identiques. X suit donc

1
la loi binomiale de paramétres n et 3 On a donc :

X(Q) =[0:n] et Vke[on], P(X=Fk) = <Z> <%)k X <§)M

Conseils méthodologiques :
Pour justifier qu'une variable aléatoire donnée suit une binomiale, plusieurs « mots-clés » sont néces-
saires :

— une succession de n expériences (n étant fixé par I’énoncé) ;

— les expériences doivent étre identiques;

— X doit désigner le nombre de fois ol un événement A de probabilité p est réalisé.
Si ces trois points sont vérifiés, vous pouvez affirmer sans calcul que X suit la loi binomiale de paramétres
n et p.

Propriété 6
Soit X une VAR qui suit la loi #(n,p). Alors on a :

EX)=np et V(X)=np(l—p).
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2 Lois usuelles discretes

a Loi géométrique (ou loi d’attente d’un premier succés dans un processus sans
mémoire)

Mise en place :

On considére une expérience aléatoire e et un événement A lié a e tel que P(A) = p. On répéte
I'expérience e de fagon illimitée et dans des conditions identiques et on appelle X le nombre d’épreuves
effectuées jusqu’a ce que A soit réalisé pour la premiére fois.

On note A; I'événement « A est réalisé a cours de la i expérience ».

On a X(©2) = N* et de plus pour tout k € N*,

Définition 8
Soit p €]0; 1[. On dit qu'une VAR X suit la loi géométrique de paramétre p si, et seulement si :

X(Q) =N

Vke N, P(X =k =(1-pr'p

On note X — ¥(p).

Exemple 14 :
L’exemple que nous suivons depuis le début de ce chapitre est un exemple de loi géométrique.
En effet, X désignait le rang d’apparition pour la premiére fois de I'événement « obtenir un 6 » (qui est

de probabilité =) au cours d’une succession illimitée d’expériences identiques.

Sans aucun calcul vous pouvez maintenant affirmer que X suit la loi géométrique de parameétre 6

Exemple 15 :
Une urne contient 3 jetons blancs et 2 noirs. On effectue dans cette urne des tirages successifs avec

remise de chaque jeton apreés tirage et on note X le nombre de tirages nécessaires pour obtenir pour la
premiére fois un jeton blanc. Quelle est la loi de X 7

(G2 GV

On note B I’événement « obtenir un jeton blanc ». On a ici P(B) =
X correspond au rang de la premiére fois ot I’'événement B est réalisé au cours d’une succession illimité

d’expériences identiques. X suit donc la loi géométrique de paramétre R et on a :

2\""' 3

Conseils méthodologiques :
Pour justifier qu'une variable aléatoire donnée suit une loi géométrique, plusieurs « mots-clés » sont
nécessaires :

— une succession illimitée d’expériences;

— les expériences doivent étre identiques;

— X doit désigner le rang d’apparition pour la premiére fois d’un événement A de probabilité p.
Si ces trois points sont vérifiés, vous pouvez affirmer sans calcul que X suit la loi géométrique de

parameétre p.
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Propriétée 7
Soit X une VAR qui suit la loi géométrique ¥4(p), p €]0;1[. Alors X admet une espérance et une
variance, et :

Démonstration :

— On sait que X admet une espérance si, et seulement si, la série Z nP(X = n) est absolument

neN*
convergente. Or, pour tout n € N*, nP(X = n) > 0 donc étudier la convergence ou la convergence

absolue revient au méme.
Sous réserve de convergence :

+o0 +oo
BE(X)=) nP(X=n)=) n(l-p)"'p
n=1 n=1
400
=p > n(1—p)
n=1
somme de série de ?erf cvgte car |1—p|<1
o 1 1
(1-0=-p) »p
1

Donc X admet une espérance et F(X) = —.

— On sait que X admet une variance si, et seulement si, X? admet une espérance, c’est-a-dire si, et
seulement si, la série Z n?P(X = n) est absolument convergente.
neN*
Or, pour tout n € N*, n?P(X = n) > 0 donc étudier la convergence ou la convergence absolue
revient au méme.
Sous réserve de convergence :

B =3 P =) =3 n(n- L)1) p = p(1—p) S 1)1 —p) 2 4p n(1p)

On reconnait ici les séries dérivées premiére et seconde de la série géométrique de raison 1 —p. Comme
|1 — p| < 1, ces séries sont convergentes. X % admet bien une espérance et

2 1 2—p
E(X)H=p(l—p) x —————— +px =
R N e )
D’apreés la formule de Keenig-Huygens, X admet donc une variance et
o 2—p 1 1-p
2 T2 p?

V(X)=E(X?) - E(X)

p2

Propriété 8 : Variable sans mémoire
Soit p €]0; 1[ et X une variable aléatoire qui suit la loi géométrique de parametre p.

V(k,0) e N*, P(X > k+ () = P(X > k)P(X > {) et Pxsp(X >k+()=P(X > ().

Remarque :
Cette propriété s’interpréte en disant que X est une variable sans mémoire. Si par exemple X
désigne une durée de vie, alors cette propriété nous dit que X ne tient pas compte du passé...
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Démonstration :

— Commengons par donner une formule explicite de P(X > n). Soit n € N :

P(X>n)=PX>2n+1)= f P(X =Fk) = §p<1_p)k1
=p><(1—p)"><71_<1_p>
=(1=p)"

Si on interpréte X comme le rang d’apparition pour la premiére fois d'un événement de probabilité
p au cours d’une succession illimitée d’expériences identiques, on peut dire que I’événement [X > n)]
signifie que 1'on a eu n échecs au cours des n premiéres expériences et on obtient donc directement
le fait que P(X >n) = (1—p)".

— Légalite P(X > k+ /() = P(X > k)P(X > () découle directement des régles de calculs sur les
puissances et du point précédent.

De plus Ppoy(X > k +1) = LUK >1§2; [j(]; Erd)_ Pg;f Z)g) — P(X > 0).

b Lol de Poisson

Définition 9
Soit A > 0. On dit qu'une VAR X suit une loi de Poisson de paramétre A si :

e A"
X(Q)=N et VneN, P(X=n)= T

On note X — Z(\).

On ne dispose pas ici d'une situation concréte simple pour illustrer la loi de Poisson. Une variable
aléatoire qui suit une loi de Poisson sera toujours introduite sous la forme « soit X une VAR qui suit une
loi de Poisson. »

Propriété 9
Soit X une VAR qui suit la loi &2()). Alors X admet une espérance et une variance, et on a :

E(X)=X et V(X)=A

Démonstration :

— On sait que X admet une espérance si, et seulement si, la série ZnP(X = n) est absolument

neN
convergente. Or, pour tout n € N, nP(X = n) > 0 donc étudier la convergence ou la convergence

absolue revient au méme.
Sous réserve de convergence :

+o0 +oo )\)\n \ +o0 )\n \ +o0 )\k
E(X):ZTLP(X:’I'L):ZTLG H:e ZMszfle )\Zﬁ
n=0 n=0 n=1 k=0

On reconnait la série exponentielle donc la série est convergente quelle que soit la valeur de \. Ainsi
E(X) existe et B(X)=e X = A
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— On sait que X admet une variance si, et seulement si, X? admet une espérance, c’est-a-dire si, et
seulement si, la série Z n?P(X = n) est absolument convergente.
neN
Or, pour tout n € N, n? P(X = n) > 0 donc étudier la convergence ou la convergence absolue revient
au méme.
Sous réserve de convergence :

400 o0
)\n
B(X?) = ZnQP(X =n)= ZnQe’)‘m
n=0 n=0 )
+00 “+o0 +o0
A — A -1 -
¢ Z”(n—m e 2 )(n—l)!+z(n—1)!
n=1 n=1 n=1
(n —2)! (n—1)! ] i=n—2 — gl k')
n=2 n=1 k=n—1 =0 k=0

On reconnait encore une fois la série exponentielle donc la série est convergente. Ainsi F(X?) existe
et B(X?) =e (Wt +2et) = A2+
D’apreés la formule de Keenig-Huygens, X admet donc une variance et

VIX)=EX)H—EBX)??=XN4+)X1-X\ =X\
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