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Variables aléatoires réelles discrètes
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Dans tout le chapitre (Ω,T , P ) désigne un espace probabilisé. Cet espace peut, s’il n’y a pas plus de
précision, être fini ou infini.

I Loi, fonction de répartition

Définition 1
Soit X une variable aléatoire définie sur Ω.

— On dit que X est une variable aléatoire réelle finie lorsque X(Ω) est un ensemble fini.
— On dit que X est une variable aléatoire réelle discrète lorsque X(Ω) est un ensemble dénom-

brable, c’est-à-dire qu’il peut s’écrire sous la forme :

X(Ω) = {xn/n ∈ N} ou X(Ω) = {xn/n ∈ N et n > n0}.

Remarque :

Certaines personnes considèrent que les variables finies sont aussi des variables discrètes.

Exemple 1 :

Un joueur lance deux fois de suite un dé cubique équilibré et note les deux nombres obtenus sous la
forme d’un couple : par exemple si le joueur obtient 2 puis 5, on note son résultat sous la forme (2, 5).
L’univers de notre expérience est Ω = J1; 6K × J1; 6K.

On définit la variable aléatoire réelle X qui, à chaque couple, associe la somme des deux nombres
obtenus. Ici, on a X(Ω) = {2, 3, . . . , 12}. Donc X est une variable aléatoire réelle finie.

Dans cet exemple, on a

[X = 2] = {(1, 1)}, [X = 4] = {(1, 3), (2, 2), (3, 1)},

[X 6 5] = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}.

Dans de nombreux exercices, on utilisera plutôt des notations du type Ak : « obtenir k au premier lancers » et

Bk : « obtenir k au deuxième lancer », et on écrira alors les événements précédents sous la forme :

[X = 2] = A1 ∩B1, [X = 4] = (A1 ∩B3) ∪ (A2 ∩B2) ∪ (A3 ∩B1),

[X 6 5] =
⋃

(i,j)∈X(Ω)2,i+j65

(Ai ∩Bj) =

4⋃

i=1

5−i⋃

j=1

(Ai ∩Bj).

Exemple 2 :

On effectue une succession de lancers indépendants d’un dé cubique équilibré jusqu’à obtenir pour la
première fois un 6.

On considère la VAR X qui renvoie le numéro du lancer pour lequel on obtient 6 pour la première fois.
L’univers de notre expérience est l’ensemble de toutes les issues possibles de cette succession de lancers,

ce qui n’est pas très agréable à décrire. La plupart des exercices ne demanderont pas d’expliciter l’univers
de l’expérience.

On a ici X(Ω) = N
∗ et donc X est une variable aléatoire réelle discrète.

Dans cet exemple, si on note Sk désigne l’événement « obtenir 6 au kième lancer », on peut écrire

[X = 4] = S1 ∩ S2 ∩ S3 ∩ S4,

[X 6 3] = S1 ∪ S2 ∪ S3 = (S1) ∪
(
S1 ∩ S2

)
∪
(
S1 ∩ S2 ∩ S3

)
,

∀n ∈ N
∗, [X 6 n] =

n⋃

k=1

Sk = S1 ∪ (S1 ∩ S2) ∪ . . . ∪
(
S1 ∩ . . . ∩ Sn−1 ∩ Sn

)
,

[X > 5] =
+∞⋃

k=5

Sk = S1 ∩ S2 ∩ S3 ∩ S4, ∀n ∈ N
∗, [X > n] =

+∞⋃

k=n

Sk =







n−1⋂

i=1

Si si n > 2

Ω si n = 1

.
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1 Loi d’une VAR discrète ou finie

Définition 2
On appelle loi de probabilité de la variable aléatoire réelle discrète ou finie X la fonction fX définie
par :

fX : X(Ω) → R

x 7→ P (X = x).

Conseils méthodologiques :

Lorsque vous devez répondre à la question « déterminer la loi de X », il faut commencer par donner
clairement X(Ω). Puis pour chaque élément x de cet ensemble X(Ω), il faut donner P (X = x).
Lorsque X(Ω) est fini et ne contient « pas trop » d’éléments, on peut présenter les résultats sous forme
de tableau avec dans la première ligne les valeurs de x et dans la deuxième ligne P (X = x).

Exemple 3 :

On reprend l’exemple 2 : on lance un dé cubique équilibré jusqu’à obtenir le premier 6 et X désigne le
numéro du lancer pour lequel on obtient 6 pour la première fois. On souhaite donner la loi de X.

Nous avons vu que X(Ω) = N
∗. Il faut maintenant calculer P (X = n) pour chaque élément n ∈ X(Ω).

Il est impossible de donner une par une ces probabilités car il y en a une infinité à calculer.
On va donc donner une formule pour calculer P (X = n) pour n quelconque dans N

∗.
On commence pour cela par expliciter l’événement [X = n]. Afin de faciliter les explications, on reprend

la notation Sk : « obtenir 6 au kième lancer ».
On peut alors écrire [X = n] = S1 ∩ . . . ∩ Sn−1 ∩ Sn et d’après la formule des probabilités composées,

on a :

P (X = n) = P
(
S1

)
× PS1

(S2)× . . .× PS1∩...∩Sn−2

(
Sn−1

)
× PS1∩...∩Sn−1

(Sn) =

(
5

6

)n−1

×
1

6
.

En conclusion, X(Ω) = N
∗ et pour tout n ∈ N

∗, P (X = n) =

(
5

6

)n−1

×
1

6
.

Propriété 1
Soit X une VAR discrète ou finie.
La famille d’événements ([X = x])x∈X(Ω) est un système complet d’événements.

Conseils méthodologiques :

— Cette propriété permet de vérifier la cohérence de vos résultats lorsque vous donnez la loi de X :

on doit toujours avoir
∑

x∈X(Ω)

P (X = x) = 1.

— Comme ([X = x])x∈X(Ω) est un système complet d’événements, on peut appliquer la formule des
probabilité totale pour n’importe quel événement A :

P (A) =
∑

x∈X(Ω)

P (X = x)P[X=x](A) =
∑

x∈X(Ω)

P ([X = x] ∩ A).

Exemple 4 :

Reprenons l’exemple précédent et vérifions la cohérence de notre résultat.

On a

+∞∑

n=1

P (X = n) =

+∞∑

n=1

(
5

6

)n−1

×
1

6
=

1

6
×

1

1− 5
6

= 1. Notre loi est bien cohérente.
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Exemple 5 :

On reprend de nouveau notre expérience de lancer de dé. On dispose aussi d’une infinité d’urnes
appelées U1, U2, U3, . . .telles que l’urne Ui contient 1 jeton blanc et 2i − 1 jetons rouges.

Après avoir effectué nos lancers de dés on choisit au hasard un jeton dans l’urne correspondant au
nombre de lancers nécessaires pour obtenir notre premier six : par exemple, si le premier six est apparu
au cinquième lancer on choisit au hasard un jeton dans l’urne U5.

Quelle est la probabilité de l’événement B « obtenir un jeton blanc » ?
La famille ([X = n])n∈N∗ est un système complet d’événements. D’après la formule des probabilités

totales :

P (B) =

+∞∑

n=1

P (X = n)P[X=n](B)

=
+∞∑

n=1

1

6

(
5

6

)n−1

×
1

2n

=
1

5
×

5

12
×

1

1− 5
12

=
1

7
.

Théorème 1 : Caractérisation de la loi d’une variable aléatoire réelle discrète

Soit {(xn, pn)/n ∈ N} une partie de R
2. Si pour tout n ∈ N, pn > 0 et si

∑

pn est convergente et
+∞∑

n=0

pn = 1, alors il existe une VAR discrète X telle que X(Ω) = {xn/n ∈ N} et ∀n ∈ N, P (X = xn) =

pn.

Conseils méthodologiques :

Ce théorème permet, lorsqu’on vous donne des valeurs pour pn et xn, de déterminer si ces valeurs
correspondent à la loi d’une variable aléatoire réelle discrète.

Exemple 6 :

Pour une variable aléatoire réelle X telle que X(Ω) = Z \ {0;−1}, on pose :

∀n ∈ Z \ {0;−1}, P (X = n) =
1

2n(n+ 1)

Vérifions que ceci définit bien une loi de probabilité pour X.
— Pour tout n ∈ Z \ {0;−1}, n et n + 1 sont de même signe donc on a bien P (X = n) > 0.

— Il faut maintenant montrer que
∑

n∈X(Ω)

P (X = n) est convergente et vaut 1.

On va calculer séparément
+∞∑

n=1

P (X = n) et
+∞∑

n=2

P (X = −n).

On a

N∑

n=1

1

2n(n+ 1)
=

N∑

n=1

(
1

2n
−

1

2(n + 1)

)

=
1

2
−

1

2(N + 1)
, par télescopage.

Donc
∑

n>1

P (X = n) est convergente et
+∞∑

n=1

P (X = n) =
1

2
.

De même
N∑

n=2

1

2(−n)(−n + 1)
=

N∑

n=2

(

−
1

2n
+

1

2(n− 1)

)

=
1

2
−

1

2N
, par télescopage.

Donc
∑

n>2

P (X = −n) est convergente et

+∞∑

n=2

P (X = −n) =
1

2
.
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En conclusion
∑

n∈X(Ω)

P (X = n) est convergente et vaut 1.

On a bien une loi de probabilité pour X.

2 Fonction de répartition d’une VAR discrète ou finie

Propriété 2
La fonction de répartition d’une VAR discrète ou finie est une fonction en escalier.

Voyons cela sur un exemple :

Exemple 7 :

On considère toujours notre exemple de lancers successifs d’un dé cubique équilibré et X la variable
aléatoire réelle égale au nombre de lancers nécessaires pour obtenir 6 pour la première fois.

Calculons plusieurs valeurs prises par FX : FX(−2), FX(2, 1), FX(2, 99).
— Par définition, FX(−2) = P (X 6 −2) = 0 car l’événement [X 6 −2] est impossible.

On peut même étendre cette remarque en écrivant que FX(α) = 0 pour tout α < 1 car lorsque α < 1,
l’événement [X 6 α] est impossible.

— De plus, FX(2, 1) = P (X 6 2, 1) = P ([X = 1] ∪ [X = 2]) car X prend des valeurs entières.

Comme les événements [X = 1] et [X = 2] sont incompatibles, FX(2, 1) =
1

6
+

5

36
=

11

36
.

Et on remarque alors que l’on a aussi FX(2, 99) = P ([X = 1] ∪ [X = 2]) =
11

36
.

On peut, en fait, étendre ce résultat en écrivant que, pour β ∈ [2; 3[,

FX(β) = P ([X = 1] ∪ [X = 2]) =
11

36
.

— Et on peut encore étendre cela en écrivant que, pour tout γ ∈ [k; k + 1[ (k ∈ N
∗),

FX(γ) = P ([X = 1] ∪ . . . ∪ [X = k]).

En résumé, FX(x) =







0 si x < 1
k∑

i=1

P (X = i) si k 6 x < k + 1
.

On voit bien sur cet exemple que la fonction FX est une fonction en escalier.

Théorème 2 : Loi d’une VAR discrète ou finie à partir de sa fonction de répartition
On suppose que X est une VAR discrète ou finie telle que X(Ω) = {xn/n ∈ I} avec I ⊂ N et on
suppose que les xn sont rangés par ordre croissant. Alors pour tout n ∈ I tel que n− 1 ∈ I (on a donc
xn−1 < xn) on a :

P (X = xn) = FX(xn)− FX(xn−1).

Démonstration :

Il faut remarquer que [X 6 xn] = [X = xn] ∪ [X 6 xn−1] car entre xn−1 et xn il n’y a pas de valeurs
prises par X.

De plus les événements [X = xn] et [X 6 xn−1] sont incompatibles donc :

P (X 6 xn) = P (X = xn) + P (X 6 xn−1) ⇐⇒ P (X = xn) = F (xn)− F (xn−1).

✷

Conseils méthodologiques :

L’utilisation la plus classique de ce théorème est la détermination de la loi du maximum ou du minimum
de n variables aléatoires indépendantes.
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Exemple 8 : Un classique !

On considère une urne contenant n jetons numérotés de 1 à n. On effectue N (N est un entier non nul
fixé) tirages avec remise et, pour k ∈ J1;NK on note Xk le numéro du jeton obtenu au k-ième tirage.

On cherche la loi de la variable aléatoire T = max(X1, X2, . . . , XN).
On remarque tout d’abord que T (Ω) = J1;nK.
Il nous faut maintenant calculer P (T = k) pour k ∈ J1;nK.
Une méthode classique consiste à commencer par calculer P (T 6 k) pour ensuite en déduire la loi.
Les tirages étant effectués avec remise, les variables (X1, X2, . . . , XN) sont indépendantes.
De plus, pour k ∈ J1;nK,

P (T 6 k) = P ([X1 6 k] ∩ [X2 6 k] ∩ . . . ∩ [XN 6 k]) c’est de la logique !

= P (X1 6 k)× P (X2 6 k)× . . .× P (XN 6 k) VAR indépendantes

=
k

n
×

k

n
× . . .×

k

n
=

(
k

n

)N

.

On obtient alors la loi de T en écrivant :
Pour k ∈ J1;nK, [T 6 k] = [T = k] ∪ [T 6 k − 1], car T est à valeurs entières. Comme il s’agit d’une

union d’événements disjoints, on en déduit que

P (T 6 k) = P (T = k) + P (T 6 k − 1) ⇔ P (T = k) = P (T 6 k)− P (T 6 k − 1).

— Donc, pour k ∈ J2;nK, P (T = k) =

(
k

n

)N

−

(
k − 1

n

)N

.

— Et P (T = 1) = P (T 6 1) =
1

nN
(la formule précédente est donc encore valable pour k = 1).

En conclusion T (Ω) = J1;nK et, pour k ∈ J1;nK, P (T = k) =

(
k

n

)N

−

(
k − 1

n

)N

.

II Moments d’une variables aléatoire discrète ou finie

1 Espérance

La définition de l’espérance d’une VAR finie a été vue en sup et rappelée dans le chapitre « Concepts
de base sur les variables aléatoires ».

Définition 3 : Espérance d’une VAR discrète
Soit X une VAR discrète.
On dit que X admet une espérance, ou que l’espérance de X existe, si, et seulement si, la série
∑

x∈X(ω)

xP (X = x) est absolument convergente.

On appelle alors espérance de X, le réel E(X) =
∑

x∈X(Ω)

xP (X = x).

Remarques :

— E(X) est une moyenne pondérée des valeurs prises par X.
— Lorsque X est une VAR finie, X admet forcément une espérance.

— On impose la convergence absolue de la série
∑

xP (X = x) afin que la valeur de l’espérance ne

dépende pas du choix de l’indexation des éléments de X(Ω).
On pourra toutefois noter que dans la grande majorité des exercices, X est une VAR à valeurs
positives donc la convergence absolue et la convergence sont équivalentes.
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Exemple 9 :

Reprenons une nouvelle fois l’exemple 2 de notre cours : X désigne le nombre de lancers d’un dé cubique
afin d’obtenir pour la première fois 6.

La loi de X est : X(Ω) = N
∗ et ∀n ∈ N

∗, P (X = n) =
1

6

(
5

6

)n−1

.

On sait que X admet une espérance si, et seulement si, la série
∑

n∈N∗

nP (X = n) est absolument

convergente. Or, pour tout n ∈ N
∗, nP (X = n) > 0 donc étudier la convergence ou la convergence absolue

revient au même. (Phrase de rédaction type pour le calcul de l’espérance d’une VAR discrète)
Sous réserve de convergence :

E(X) =

+∞∑

n=1

nP (X = n) =

+∞∑

n=1

n
1

6

(
5

6

)n−1

=
1

6

+∞∑

n=1

n

(
5

6

)n−1

︸ ︷︷ ︸

somme de série de ref cvgte car |5/6|<1

=
1

6
×

1
(
1− 5

6

)2 = 6.

Donc X admet une espérance et E(X) = 6.
Ce résultat signifie qu’en moyenne, on obtient un 6 pour la première fois au sixième lancer (on peut

remarquer que ce résultat serait le même pour obtenir 1, 2,. . .).

Propriété 3
Soit X une VAR discrète ou finie telle que X(Ω) ⊂ [a; b] avec a et b deux réels fixés.
Alors X admet une espérance et a 6 E(X) 6 b.

Conseils méthodologiques :

— Cette propriété permet de vérifier la cohérence de votre résultat.
— En particulier si X ne prend que des valeurs positives, alors E(X) > 0.

Démonstration :

Comme on suppose que X(Ω) ⊂ [a; b], on a donc, pour tout x ∈ X(Ω), a 6 x 6 b.
— On pose alors M = max(|a|, |b|). Cela nous permet d’écrire que, pour tout x ∈ X(Ω), |x| 6 M et

donc |xP (X = x)| 6 MP (X = x), car P (X = x) > 0.

Or, on sait que
∑

P (X = x) est une série convergente, donc d’après le critère de majoration pour

les séries à termes positifs,
∑

|xP (X = x)| est une série convergente, ce qui signifie que X admet
une espérance.

— On peut maintenant écrire :

a 6 x 6 b ⇒ aP (X = x) 6 xP (X = x) 6 bP (X = x) car P (X = x) > 0

⇒
∑

x∈X(Ω)

aP (X = x) 6
∑

x∈X(Ω)

xP (X = x) 6
∑

x∈X(Ω)

bP (X = x) somme d’inégalités

⇒ a 6 E(X) 6 b car
∑

x∈X(Ω)

P (X = x) = 1.

✷
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Le théorème suivant est extrêmement important :

Théorème 3 : Théorème de transfert
Soit X une VAR discrète et soit g une fonction définie au moins sur X(Ω) et à valeurs dans R.
Alors la variable aléatoire réelle g(X) admet une espérance si, et seulement si, la série
∑

x∈X(Ω)

g(x)P (X = x) est absolument convergente et dans ce cas, on a :

E(g(X)) =
∑

x∈X(Ω)

g(x)P (X = x).

Remarque :

Il existe une version du théorème de transfert pour les VAR finie dans votre cours de sup. La principale
différence vient du fait qu’il n’y a pas besoin de parler de convergence de série !

Exemple 10 :

Poursuivons l’exemple précédent et déterminons E(X2).

On sait que X2 admet une espérance si, et seulement si, la série
∑

n∈N∗

n2P (X = n) est absolument

convergente et dans ce cas E(X2) =

+∞∑

n=1

n2P (X = n).

Or on remarque que, pour tout n ∈ N
∗,

n21

6

(
5

6

)n−1

=
5

36
× n(n− 1)

(
5

6

)n−2

+
1

6
× n

(
5

6

)n−1

.

On reconnait ici le terme général des séries dérivées première et seconde de la série géométrique de

raison
5

6
.

Comme

∣
∣
∣
∣

5

6

∣
∣
∣
∣
< 1, les séries

∑

n>1

n(n− 1)

(
5

6

)n−2

et
∑

n>1

n

(
5

6

)n−1

sont absolument convergentes.

Ainsi, X2 admet une espérance, et on a :

E(X2) =
5

36
×

+∞∑

n=1

n(n− 1)

(
5

6

)n−2

+
1

6
×

+∞∑

n=1

n

(
5

6

)n−1

=
5

36
×

2
(
1− 5

6

)3 +
1

6
×

1
(
1− 5

6

)2 = 60 + 6 = 66

En conclusion, X admet un moment d’ordre 2 et E(X2) = 66.

2 Variance et écart type

Tous les résultats utiles sur la variance sont présents dans le chapitre « Concepts de base des variables
aléatoires »

Exemple 11 :

On considère la VAR X dont la loi est donnée par X(Ω) = N
∗ et pour tout n ∈ N

∗ P (X = n) =
1

λn3

avec λ =
+∞∑

k=1

1

k3
.

On a nP (X = n) =
1

λn2
donc

∑

|nP (X = n)| est convergente et E(X) existe.

De plus n2P (X = n) =
1

λn
donc

∑

|n2P (X = n)| est divergente et E(X2) n’existe pas.

X n’admet donc pas de variance.
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Exemple 12 :

Reprenons encore notre lancer de dé jusqu’à obtenir 6 pour la première fois. Nous avons vu dans la
partie précédente que X2 admet une espérance. Donc, d’après la formule de Kœnig-Huygens, V (X) existe
et

V (X) = E(X2)− (E(X))2 = 66− 36 = 30.

III Lois usuelles

1 Lois usuelles finies (Rappels de sup)

a Loi uniforme

Définition 4
Soit n ∈ N

∗. On dit que X suit la loi uniforme sur J1;nK si, et seulement si :

X(Ω) = J1;nK et ∀k ∈ J1;nK, P (X = k) =
1

n
.

Remarque :

Lorsque X suit une loi uniforme, tous les événements [X = k] sont équiprobables. On peut ainsi étendre
cette notion de loi uniforme sur n’importe quel ensemble fini.

Propriété 4

Soit X une VAR qui suit la loi uniforme sur J1;nK. Alors : E(X) =
n+ 1

2
.

Remarque :

La valeur de la variance est hors-programme.

b Loi de Bernoulli (ou indicatrice d’événement)

Définition 5
On considère une expérience aléatoire e et A un événement lié à cette expérience. On définit alors la
variable aléatoire 1A égale à 1 si A est réalisé et 0 sinon.
La variable aléatoire 1A s’appelle l’indicatrice de A.

Remarque :

On a donc P (1A = 1) = P (A) et P (1A = 0) = 1− P (A).

Définition 6
Soit p ∈ [0; 1]. On dit qu’une VAR X suit la loi de Bernoulli de paramètre p si, et seulement si :

X(Ω) = {0; 1}, P (X = 0) = 1− p et P (X = 1) = p.

On note X →֒ B(p).

Remarque :

Si A est un événement, alors la variable aléatoire 1A suit la loi de Bernoulli de paramètre P (A).
Réciproquement, si X →֒ B(p) alors X = 1[X=1].

Propriété 5
Si X suit une loi de Bernoulli de paramètre p alors

E(X) = p et V (X) = p(1− p).
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c Loi binomiale (ou des tirages avec remise)

Mise en place :

On considère une expérience e et on considère un événement A lié à e tel que P (A) = p. On suppose
que l’on effectue n fois l’expérience e dans les mêmes conditions (les expériences sont indépendantes) et
on considère X le nombre de fois où A est réalisé au cours de ces n expériences identiques.

X prend donc les valeurs 0, 1, ..., n.
Soit k ∈ J0;nK. On cherche à calculer P (X = k) c’est-à-dire la probabilité que A soit réalisé k fois

exactement. Parmi les n expériences, il y a

(
n

k

)

façon de placer les k fois où A est réalisé. Chacun de ces
(
n

k

)

événement est réalisé avec la probabilité pk(1− p)n−k.

On a donc : P (X = k) =

(
n

k

)

pk(1− p)n−k.

Définition 7
Soit p ∈ [0; 1] et n ∈ N. On dit que la VAR X suit la loi binomiale de paramètres n et p si, et
seulement si :

X(Ω) = {0, 1, . . . , n} = J0;nK

∀k ∈ J0;nK P (X = k) =

(
n

k

)

pk(1− p)n−k.

On note X →֒ B(n, p).

Un VAR qui suit une loi binomiale est une VAR qui « compte le nombre de réalisation d’un événement
A de probabilité p au cours de n expériences identiques. »

Exemple 13 :

On procède à n lancers d’un dé équilibré dont les 6 faces sont numérotées de 1 à 6. On note X la
variable aléatoire égale au nombre de fois où l’on obtient un numéro inférieur à 2. Quelle est la loi de X ?

On note A l’événement « obtenir un nombre inférieur à 2 ». On a ici P (A) =
1

3
.

X compte le nombre de réalisation de l’événement A au cours de n expériences identiques. X suit donc

la loi binomiale de paramètres n et
1

3
. On a donc :

X(Ω) = J0;nK et ∀k ∈ J0;nK, P (X = k) =

(
n

k

)(
1

3

)k

×

(
2

3

)n−k

.

Conseils méthodologiques :

Pour justifier qu’une variable aléatoire donnée suit une binomiale, plusieurs « mots-clés » sont néces-
saires :

— une succession de n expériences (n étant fixé par l’énoncé) ;
— les expériences doivent être identiques ;
— X doit désigner le nombre de fois où un événement A de probabilité p est réalisé.

Si ces trois points sont vérifiés, vous pouvez affirmer sans calcul que X suit la loi binomiale de paramètres
n et p.

Propriété 6
Soit X une VAR qui suit la loi B(n, p). Alors on a :

E(X) = np et V (X) = np(1− p).
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2 Lois usuelles discrètes

a Loi géométrique (ou loi d’attente d’un premier succès dans un processus sans
mémoire)

Mise en place :

On considère une expérience aléatoire e et un événement A lié à e tel que P (A) = p. On répète
l’expérience e de façon illimitée et dans des conditions identiques et on appelle X le nombre d’épreuves
effectuées jusqu’à ce que A soit réalisé pour la première fois.

On note Ai l’événement « A est réalisé a cours de la ieme expérience ».
On a X(Ω) = N

∗ et de plus pour tout k ∈ N
∗,

P (X = k) = P
(
A1 ∩A2 ∩ ... ∩ Ak−1 ∩Ak

)
= P

(
A1

)
×PA1

(A2)×. . .×PA1∩...∩An−2

(
An−1

)
×PA1∩...∩An−1

(An) = (1−p)k−1

Définition 8
Soit p ∈]0; 1[. On dit qu’une VAR X suit la loi géométrique de paramètre p si, et seulement si :

X(Ω) = N
∗

∀k ∈ N
∗, P (X = k) = (1− p)k−1p.

On note X →֒ G (p).

Exemple 14 :

L’exemple que nous suivons depuis le début de ce chapitre est un exemple de loi géométrique.
En effet, X désignait le rang d’apparition pour la première fois de l’événement « obtenir un 6 »(qui est

de probabilité
1

6
) au cours d’une succession illimitée d’expériences identiques.

Sans aucun calcul vous pouvez maintenant affirmer que X suit la loi géométrique de paramètre
1

6
.

Exemple 15 :

Une urne contient 3 jetons blancs et 2 noirs. On effectue dans cette urne des tirages successifs avec
remise de chaque jeton après tirage et on note X le nombre de tirages nécessaires pour obtenir pour la
première fois un jeton blanc. Quelle est la loi de X ?

On note B l’événement « obtenir un jeton blanc ». On a ici P (B) =
3

5
.

X correspond au rang de la première fois où l’événement B est réalisé au cours d’une succession illimité

d’expériences identiques. X suit donc la loi géométrique de paramètre
3

5
et on a :

X(Ω) = N
∗ et ∀k ∈ N

∗, P (X = k) =

(
2

5

)k−1

×
3

5

Conseils méthodologiques :

Pour justifier qu’une variable aléatoire donnée suit une loi géométrique, plusieurs « mots-clés » sont
nécessaires :

— une succession illimitée d’expériences ;
— les expériences doivent être identiques ;
— X doit désigner le rang d’apparition pour la première fois d’un événement A de probabilité p.

Si ces trois points sont vérifiés, vous pouvez affirmer sans calcul que X suit la loi géométrique de
paramètre p.
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Propriété 7
Soit X une VAR qui suit la loi géométrique G (p), p ∈]0; 1[. Alors X admet une espérance et une
variance, et :

E(X) =
1

p
et V (X) =

1− p

p2
.

Démonstration :

— On sait que X admet une espérance si, et seulement si, la série
∑

n∈N∗

nP (X = n) est absolument

convergente. Or, pour tout n ∈ N
∗, nP (X = n) > 0 donc étudier la convergence ou la convergence

absolue revient au même.
Sous réserve de convergence :

E(X) =

+∞∑

n=1

nP (X = n) =

+∞∑

n=1

n(1− p)n−1p

= p
+∞∑

n=1

n(1− p)n−1

︸ ︷︷ ︸

somme de série de ref cvgte car |1−p|<1

= p×
1

(1− (1− p))2
=

1

p
.

Donc X admet une espérance et E(X) =
1

p
.

— On sait que X admet une variance si, et seulement si, X2 admet une espérance, c’est-à-dire si, et

seulement si, la série
∑

n∈N∗

n2P (X = n) est absolument convergente.

Or, pour tout n ∈ N
∗, n2P (X = n) > 0 donc étudier la convergence ou la convergence absolue

revient au même.
Sous réserve de convergence :

E(X2) =
+∞∑

n=1

n2P (X = n) =
+∞∑

n=1

n(n−1+1)(1−p)n−1p = p(1−p)
+∞∑

n=1

n(n−1)(1−p)n−2+p
+∞∑

n=1

n(1−p)n−1.

On reconnait ici les séries dérivées première et seconde de la série géométrique de raison 1−p. Comme
|1− p| < 1, ces séries sont convergentes. X2 admet bien une espérance et

E(X2) = p(1− p)×
2

(1− (1− p))3
+ p×

1

(1− (1− p))2
=

2− p

p2
.

D’après la formule de Kœnig-Huygens, X admet donc une variance et

V (X) = E(X2)− E(X)2 =
2− p

p2
−

1

p2
=

1− p

p2
.

✷

Propriété 8 : Variable sans mémoire
Soit p ∈]0; 1[ et X une variable aléatoire qui suit la loi géométrique de paramètre p.

∀(k, ℓ) ∈ N
2, P (X > k + ℓ) = P (X > k)P (X > ℓ) et P[X>k](X > k + ℓ) = P (X > ℓ).

Remarque :

Cette propriété s’interprète en disant que X est une variable sans mémoire. Si par exemple X
désigne une durée de vie, alors cette propriété nous dit que X ne tient pas compte du passé...
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Démonstration :

— Commençons par donner une formule explicite de P (X > n). Soit n ∈ N :

P (X > n) = P (X > n + 1) =
+∞∑

k=n+1

P (X = k) =
+∞∑

k=n+1

p(1− p)k−1

= p× (1− p)n ×
1

1− (1− p)

= (1− p)n.

Si on interprète X comme le rang d’apparition pour la première fois d’un événement de probabilité
p au cours d’une succession illimitée d’expériences identiques, on peut dire que l’événement [X > n]
signifie que l’on a eu n échecs au cours des n premières expériences et on obtient donc directement
le fait que P (X > n) = (1− p)n.

— L’égalité P (X > k + ℓ) = P (X > k)P (X > ℓ) découle directement des règles de calculs sur les
puissances et du point précédent.

De plus P[X>k](X > k + l) =
P ([X > k] ∩ [X > k + ℓ])

P (X > k)
=

P (X > k + ℓ)

P (X > k)
= P (X > ℓ).

✷

b Loi de Poisson

Définition 9
Soit λ > 0. On dit qu’une VAR X suit une loi de Poisson de paramètre λ si :

X(Ω) = N et ∀n ∈ N, P (X = n) =
e−λλn

n!
.

On note X →֒ P(λ).

On ne dispose pas ici d’une situation concrète simple pour illustrer la loi de Poisson. Une variable
aléatoire qui suit une loi de Poisson sera toujours introduite sous la forme « soit X une VAR qui suit une
loi de Poisson. »

Propriété 9
Soit X une VAR qui suit la loi P(λ). Alors X admet une espérance et une variance, et on a :

E(X) = λ et V (X) = λ.

Démonstration :

— On sait que X admet une espérance si, et seulement si, la série
∑

n∈N

nP (X = n) est absolument

convergente. Or, pour tout n ∈ N, nP (X = n) > 0 donc étudier la convergence ou la convergence
absolue revient au même.
Sous réserve de convergence :

E(X) =

+∞∑

n=0

nP (X = n) =

+∞∑

n=0

ne−λλ
n

n!
= e−λ

+∞∑

n=1

λn

(n− 1)!
=

k=n−1
e−λλ

+∞∑

k=0

λk

k!
.

On reconnait la série exponentielle donc la série est convergente quelle que soit la valeur de λ. Ainsi
E(X) existe et E(X) = e−λλeλ = λ.
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— On sait que X admet une variance si, et seulement si, X2 admet une espérance, c’est-à-dire si, et

seulement si, la série
∑

n∈N

n2P (X = n) est absolument convergente.

Or, pour tout n ∈ N, n2P (X = n) > 0 donc étudier la convergence ou la convergence absolue revient
au même.
Sous réserve de convergence :

E(X2) =
+∞∑

n=0

n2P (X = n) =
+∞∑

n=0

n2e−λλ
n

n!

= e−λ

+∞∑

n=1

n
λn

(n− 1)!
= e−λ

(
+∞∑

n=1

(n− 1)
λn

(n− 1)!
+

+∞∑

n=1

λn

(n− 1)!

)

= e−λ

(
+∞∑

n=2

λn

(n− 2)!
+

+∞∑

n=1

λn

(n− 1)!

)

=
i=n−2
k=n−1

e−λ

(

λ2
+∞∑

i=0

λi

i!
+ λ

+∞∑

k=0

λk

k!

)

.

On reconnait encore une fois la série exponentielle donc la série est convergente. Ainsi E(X2) existe
et E(X2) = e−λ

(
λ2eλ + λeλ

)
= λ2 + λ.

D’après la formule de Kœnig-Huygens, X admet donc une variance et

V (X) = E(X2)−E(X)2 = λ2 + λ− λ2 = λ.

✷
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