$Programme\ de\ colle\ de\ la\ semaine\ n^o\ 6$

3 au 7 novembre 2025

La démonstration des propriétés en gras pourra faire l'objet d'une question de cours.

Analyse: révisions sur les complexes et sur la trigonométrie

- Nombres complexes : module, argument, écriture algébrique, écriture exponentielle, formules d'Euler et de Moivre
- Trigonométrie : angles remarquables, formules d'addition, de duplication,..., techniques de linéarisation et factorisation.

Probabilités : Concepts de base des probabilités

- Rappels sur les ensembles : définitions rigoureuses de A∩B, A∪B, Ā, A ⊂ B.
 Définitions rigoureuses de ∩ A_n et ∪ A_n.
 Vocabulaire : expérience aléatoire, univers, notion de tribu (ne pas donner d'exercices sur les
- Vocabulaire : expérience aléatoire, univers, notion de tribu (**ne pas donner d'exercices sur les tribus**), événements, événements disjoints, événement certain, événement impossible, événement élémentaire, système complet d'événements, système quasi-complet d'événements.

Question de cours possible : démontrer que si A et B sont deux éléments d'une tribu alors $A\cap B$ appartient à la tribu.

- Probabilité : définition, propriétés, notion d'événement quasi-impossible ou quasi-certain, existence d'une unique probabilité sur un univers dénombrable définie par $P(\{\omega_i\}) = p_i$ avec $p_i \ge 0$ et $\sum_{i \in I} p_i = 1$.
- Probabilité conditionnelle : définition (notation $P_A(B)$ ou P(B/A)), formule des probabilités composées, formule des probabilités totales (que l'on étend aussi avec l'hypothèse d'un système quasi-complet d'événements), formule de Bayes.
- Indépendance d'événements : 2 événements indépendants, famille finie d'événements mutuellement indépendants, suite infinie d'événements mutuellement indépendants.

À venir : Variables aléatoires discrètes