
Exercices : Applications linéaires

Pour commencer...

Exercice 1 : Faire ses gammes

Les applications suivantes sont-elles linéaires ? Justifier votre réponse.

1.
f1 : R[X ] → R

3

P 7→ (P (0), P ′(0), P ′′(0))
.

2.
f2 : M2(R) → R

M 7→ det(M)
.

3.
f3 : R[X ] → R[X ]

P 7→ P (1)(X − 1) +XP ′ .

4.
f4 : Mn(R) → Mn,1(R)

M 7→ MU +MTU
(U ∈Mn,1(R) fixée).

Exercice 2 :

Soit f l’application définie sur Mp,1(R) (p > 2) par f













x1

...
xp












=

p
∑

k=1

xk.

On admet que dim(Mp,1(R)) = p.

1. Montrer que f est une application linéaire.

2. Si cela est possible, déterminer une base du noyau de f . f est-elle injective ?

3. L’application f est-elle surjective ?

4. On note g l’application de R dans Mp,1(R) définie par g(x) =











x
0
...
0











.

Montrer que f ◦ g = idR. Que remarquez-vous ?

Exercice 3 :

Soit f l’application linéaire de M2(C) dans C2[X ] définie par :

f

((

a b
c d

))

= a(X − i)2 + b(X + i)2 + c(X − i) + d(X + i).

On admet que dim(M2(C)) = 4. Déterminer une base du noyau et de l’image de f .

Isomorphismes en dimension finie

Exercice 4 : Faire ses gammes

Les applications linéaires suivantes sont-elles bijectives ? Justifier vos réponses.

1.
f : R3[X ] → R3[X ]

P 7→ (X2 − 1)P ′′ +XP ′ .

2.
g : M2(R) → M2(R)

M 7→ M +MTJ
où J =

(

1 1
1 1

)

.

3.
h : R3[X ] → R

4

P 7→
(

P (2), P ′(2), P ′′(2), P (3)(2)
) .

Exercice 5 :

Soient a1, a2, a3, a4 des éléments de R distincts deux à deux. Soit f l’application définie
par :







R3[X ] → M2(R)

P 7→

(

P (a1) P (a2)
P (a3) P (a4)

)

1. Montrer que f est linéaire.

2. Montrer que f est injective.

3. On admet que dim(M2(R)) = 4. Montrer que f est bijective.

4. Déterminer f−1

((

1 0
0 0

))

puis f−1(I2).

Exercice 6 :

Soient E, F et G trois espaces vectoriels.

1. Soient f une application de E dans F et g une application de F dans G telles que
g ◦ f = idE,G.

a) Montrer que f est injective. Est-elle surjective ?

b) Montrer que g est surjective. Est-elle injective ?

2. On reprend les hypothèses de la question précédentes et on ajoute quelques hypothèses :
f et g sont des applications linéaires et E, F et G sont des espaces de dimension finie
et tous de même dimension.

Que peut-on dire des applications f et g ?
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Matrices et applications linéaires

Exercice 7 : Faire ses gammes

Les réponses seront rigoureusement justifiées.

1. Soit f ∈ L (R3) définie par

∀(x, y, z) ∈ R
3, f(x, y, z) = (x+ y − z, 2y,−x+ y + z).

Déterminer la matrice de f relative à la base canonique de R
3.

2. Soit f ∈ L (R3,R2[X ]) définie par :

∀(x, y, z) ∈ R
3, f(x, y, z) = x(X − 2)2 + y(X − 2)(X − 1) + z(X − 1)2.

Déterminer la matrice de f relative aux bases canoniques de R
3 et R2[X ].

3. Soit f ∈ L (R2,R5) définie par :

∀(x, y) ∈ R
2, f(x, y) = (x− y, 3x, 2y − 3x,−y, x+ y).

Déterminer la matrice de f relative aux bases canoniques de R
2 et R

5.

4. Soit f ∈ L (R4,R) définie par :

∀(x, y, z, t) ∈ R
4, f(x, y, z, t) = 2x− 3y + 4t.

Déterminer la matrice de f relative aux bases canoniques de R
4 et R.

Exercice 8 :

Soit f ∈ L (R3[X ]) définie par

∀P ∈ R3[X ], f(P ) = (X2 − 1)P ′′ +XP ′.

1. Déterminer la matrice A de f relative à la base canonique Bc de R3[X ].

2. On note Q0 = X , Q1 = 4X3 − 3X , Q2 = 1 et Q3 = −2X2 + 1 et on admet que

a) Justifier que B = (Q0, Q1, Q2, Q3) est une base de R3[X ].

b) Déterminer la matrice D de f relative à la base B.

3. Quelle relation a-t-on entre A et D ?

Exercice 9 : Faire ses gammes

1. Déterminer une base du noyau et de l’image de l’endomorphisme f de R
3 dont la

matrice dans la base canonique est A =





3 −2 4
2 −1 −3
5 −3 1



.

2. Déterminer, si possible, une base du noyau et de l’image de l’application linéaire g de
R2[X ] dans R3[X ] dont la matrice relative aux bases canoniques des deux espaces est

B =









1 −1 0
2 0 3
−3 1 1
0 0 1









.

3. On admet que la famille B =

((

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

))

est une base de

M2(C). Déterminer une base de l’image et du noyau de l’endomorphisme g de M2(C)

dont la matrice relative à la base B est C =









1 0 0 1
0 i 1 0
0 1 −i 0
1 0 0 1









.

Exercice 10 :

On considère f l’endomorphisme de R2[X ] dont la matrice dans la base canonique est

donnée par : A =





0 −1 1
−1 0 −1
1 −1 0



.

1. Montrer que f2 − f − 2 id = 0 (id désigne l’application identité de R2[X ]).

2. En déduire que f est un isomorphisme et exprimer f−1 en fonction de f et id .

3. Calculer f−1(X2 + 1).

On mélange tout et on complique un peu !

Exercice 11 :

On considère R2[X ] muni de sa base canonique (1, X,X2) ainsi que l’application
f ∈ L (R2[X ],R2) définie par :

f(1) = (1, 0) f(X) = (2,−1) f(X2) = (−3, 1).

1. Sans calculer f(P ) pour P quelconque, déterminer une base et la dimension de ker(f).

2. L’application f est-elle bijective ?

3. Expliciter f(P ) pour P polynôme quelconque de R2[X ].
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Exercice 12 : Matrices semblables

On définit les deux matrices suivantes :

T =





1 1 1
0 1 0
0 1 0



 , L =





1 1 0
0 1 0
0 0 0



 .

Le but de l’exercice est de montrer que les matrices T et L sont semblables. Il faudra
essayer de retenir la méthode employée dans cet exercice.

On note f l’endomorphisme de R
3 représenté par la matrice T dans la base canonique

de R
3.

1. Déterminer un vecteur u1 dont la première coordonnée dans la base canonique est
égale à 1 et tel que f(u1) = u1.

2. Déterminer un vecteur u2 non nul et tel que f(u2) = u1 + u2.

3. Déterminer une base du noyau de f .

4. Montrer que T et L sont semblables.

Indication : on pourra s’intéresser à la matrice représentative de f dans une base
construite à l’aide des questions précédentes.

Exercice 13 :

On note Bc = (1, X,X2) la base canonique de R2[X ] et on considère f l’endomorphisme
de R2[X ] dont la matrice dans la base Bc est :

A =





−3 2 2
−2 1 2
−2 2 1



 .

1. À l’aide de la matrice A déterminer si l’application f est bijective.

2. Déterminer une base et la dimension de E1 = ker(f − idR2[X]). On notera B1 cette
base.

3. Déterminer une base et la dimension de E−1 = ker(f + idR2[X]). On notera B2 cette
base.

4. On note B la famille obtenue en réunissant les vecteurs de B1 suivi de ceux de B2.

a) Démontrer que B est une base de R2[X ].

b) Déterminer la matrice D de f relative à la base B.

5. On note P la matrice de passage de Bc à B.

Démontrer que, pour tout n ∈ N, An = PDnP−1.

Il ne sera pas utile d’expliciter la matrice P .

Exercice 14 :

Soit n ∈ N
∗ et Φ l’application :

Φ : Cn[X ] −→ Cn[X ]
P 7−→ P (X + 2)− P (X)

1. Montrer que Φ est un endomorphisme de Cn[X ].

2. a) Soit P ∈ ker(Φ) tel que deg(P ) > 1. Montrer à l’aide du théorème de D’Alembert
que P admet une infinité de racines.

b) Conclure que ker(Φ) = C0[X ].

3. En déduire que Im(Φ) = Cn−1[X ].

Exercice 15 :

Soient S l’ensemble des suites réelles (un)n∈N vérifiant la relation :

∀n ∈ N, un+3 = 2un+2 + un+1 − 2un

et (wn)n∈N la suite appartenant à S telle que w0 = 0, w1 = 1 et w2 = 2.

1. Déterminer les racines α, β et γ de l’équation x3 − 2x2 − x+ 2 = 0.

2. a) Montrer que S est un espace vectoriel, puis que les suites (αn)n∈N, (βn)n∈N et
(γn)n∈N forment une famille libre de S.

b) Soit f l’application qui à tout élément u de S associe f(u) = (u0, u1, u2). Montrer
que f est un isomorphisme de S dans R

3.

c) En déduire la dimension de S puis une base de S.

3. En déduire, pour tout n ∈ N l’expression de wn en fonction de n.
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Un peu d’abstraction

Exercice 16 : Oral Agro-véto modifié

1. Préliminaire informatique :
Écrire une fonction Python powmat(A,m) qui renvoie la matrice A à la puissance
m-ième. On pourra utiliser la fonction numpy.dot(M,N) qui renvoie le produit MN
sous forme de tableau (array).

Soit M(a) =





1 0 1
0 a 0
1 0 1



 où a ∈ R.

Soient E un espace vectoriel de dimension 3 et B = (~i,~j,~k) une base de E.
Soit fa l’endomorphisme de E représenté par la matrice M(a)dans la base B.

2. a) Quel est le rang de M(a) ? Discuter selon la valeur de a.

b) Déterminer une base du noyau de fa. Discuter selon la valeur de a.

3. On pose :
{

−→u =
−→
i −
−→
k

−→w =
−→
i +
−→
k

a) Montrer que B
′ = (−→u ,

−→
j ,−→w ) est une base de E.

b) Calculer fa(
−→u ) et fa(

−→w ).

c) En déduire une matrice P et une matrice Da diagonale telles que
M(a) = PDaP

−1.

4. On prend dans cette partie a = −2.

a) La famille (M(−2),M(−2)3) est-elle libre ?

b) Soit n ∈ N. Expliciter M(−2)n.

Exercice 17 :

Soit E un espace vectoriel de dimension finie et F un espace vectoriel.

1. Soient f, g ∈ L (E,F ), Bf = (x1, . . . , xp) une base de Im(f) et Bg = (y1, . . . , yk) une
base de Im(g).

a) Montrer que Im(f + g) ⊂ Vect(x1, . . . , xp, y1, . . . , yk).

b) En déduire que rg(f + g) 6 rg(f) + rg(g).

c) À l’aide de l’inégalité précédente, montrer que |rg(f)− rg(g)| 6 rg(f + g).

2. Soient f, g ∈ L (E) tels que f ◦ g = 0 et f + g est bijectif.

a) Montrer que Im(g) ⊂ ker(f).

b) Montrer alors que rg(f) + rg(g) = dim(E).

Exercice 18 :

Soient E un K-espace vectoriel, f et g deux endomorphismes de E.

1. Montrer que ker(f) ⊂ ker(g ◦ f).

2. Montrer que ker(g ◦ f) = ker(f)⇐⇒ Im(f) ∩ ker(g) = {0}

3. Montrer que Im(g ◦ f) ⊂ Im(g).

4. Montrer que Im(g ◦ f) = Im(g)⇐⇒ Im(f) + ker(g) = E.
On définit la somme de deux sous-espaces vectoriels F et G par

F +G = {−→x +−→y /−→x ∈ F et −→y ∈ G}.

Exercice 19 :

Soit f ∈ L (E) où E est de dimension n > 1. On suppose que f est nilpotent, c’est-à-dire
qu’il existe un entier k > 1 tel que fk = 0.

1. Montrer que f n’est pas bijective.

2. Soit p le plus petit entier tel que fp = 0 et x0 ∈ E tel que fp−1(x0) 6= 0.

a) Montrer que
(

x0, f(x0), · · · , f
p−1(x0)

)

est une famille libre.

b) En déduire que p 6 n.

Exercice 20 :

Soit E un R-espace vectoriel de dimension 2n (n ∈ N
∗). On considère f un endomor-

phisme de E tel que f ◦ f = 0.
On suppose, de plus, qu’il existe des vecteurs u1, . . ., un tels que la famille

(f(u1), . . . , f(un)) est libre.

1. Montrer que dim(Im(f)) > n.

2. Montrer que la famille (u1, . . . , un) est libre.

3. Montrer que ker(f) = Im(f).
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Correction
Correction de l’exercice 1 :

1. Soient Q et R deux polynômes de R[X ] et a un réel. On a :

f1(aQ+R) = ((aQ+R)(0), (aQ +R)′(0), (aQ+R)′′(0))

= (aQ(0) +R(0), aQ′(0) +R′(0), aQ′′(0) +R′′(0))

= a(Q(0), Q′(0), Q′′(0)) + (R(0), R′(0), R′′(0))

= af1(Q) + f1(R)

Donc f1 est une application linéaire.

2. On a det(2I2) = det

(

2 0
0 2

)

= 4 et 2 det(I2) = 2. Donc f2(2I2) 6= 2f2(I2).

f2 n’est pas une application linéaire.
3. Soient Q et R deux polynômes de R[X ] et a un réel. On a :

f3(aQ+R) = (aQ+R)(1)(X − 1) +X(aQ+R)′

= (aQ(1) +R(1)) (X − 1) +X(aQ′ +R′)

= a (Q(1)(X − 1) +XQ′) +R(1)(X − 1) +XR′

= af3(Q) + f3(R)

Donc f3 est une application linéaire.
4. Soient K et L deux matrices de Mn(R) et a un réel. On a :

f4(aK + L) = (aK + L)U + (aK + L)TU

= aKU + LU + aKTU + LTU par linéarité de la transposition

= af4(K) + f4(L)

Donc f4 est une application linéaire.

Correction de l’exercice 2 :

1. Soient X =







x1

...
xp






et Y =







y1
...
yp






deux éléments de Mp,1(R) et a ∈ R. On a :

f(aX + Y ) = f













ax1 + y1
...

axp + yp












=

p
∑

k=1

(axk + yk)

= a

p
∑

k=1

xk +

p
∑

k=1

yk

= af(X) + f(Y )

L’application f est bien linéaire.

2. Afin de déterminer si f est injective déterminons son noyau. Par définition

ker(f) = {X ∈Mp,1(R)/f(X) = 0}

= {X ∈Mp,1(R)/x1 + . . .+ xp = 0}

=





























x1

...
xp−1

−x1 − . . .− xp−1











/(x1, . . . , xp−1) ∈ R
p−1



















= Vect

































1
0
...
0
−1















,



















0
1
0
...
0
−1



















, . . . ,















0
...
0
1
−1

































.

On peut facilement montrer que la famille

































1
0
...
0
−1















,



















0
1
0
...
0
−1



















, . . . ,















0
...
0
1
−1

































, qui est

génératrice de ker(f), est libre.

Ainsi

































1
0
...
0
−1















,



















0
1
0
...
0
−1



















, . . . ,















0
...
0
1
−1

































est une base de ker(f).

On voit donc que ker(f) 6= {0} ainsi, f n’est pas injective.

3. Deux méthodes pour déterminer si f est surjective.

— Méthode 1 : f est une application de Mp,1(R) dans R. Il nous faut donc déter-
miner si tout élément de R admet un antécédent par f .

Soit a ∈ R. On peut facilement remarquer que a = f





















a
0
...
0





















.

Donc tout élément de R admet un antécédent par f ce qui signifie que f est
surjective.
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— Méthode 2 : On sait que Im(f) est un sous-espace vectoriel de R.
Or R est un espace vectoriel de dimension 1 donc ses seuls sous-espace vectoriels
sont {0} et R.

On peut facilement remarquer que Im(f) 6= {0} car par exemple f





















1
0
...
0





















=

1 6= 0.
Donc on a Im(f) = R.

4. Pour tout x ∈ R

(f ◦ g)(x) = f(g(x)) = f





















x
0
...
0





















= x+ 0 + . . .+ 0 = x.

On a donc f ◦ g = idR.
On peut remarquer que même s’il existe une fonction g telle que f ◦ g = id, la fonction
f n’est pas pour autant bijective ! !

Correction de l’exercice 3 :

Commençons par déterminer une base du noyau de f :

f

((

a b
c d

))

= 0

⇔a(X − i)2 + b(X + i)2 + c(X − i) + d(X + i) = 0

⇔(a+ b)X2 + (−2ai + 2bi + c+ d)X − a− b− ic+ id = 0

⇔







a+ b = 0
−2ai + 2bi + c+ d = 0
−a− b− ic+ id = 0

⇔







b = −a
−4ai + 2c = 0
d = c

⇔







b = −a
c = 2ia
d = 2ia

.

Donc ker(f) =

{(

a −a
2ia 2ia

)

/a ∈ C

}

= Vect

((

1 −1
2i 2i

))

.

La famille

((

1 −1
2i 2i

))

est génératrice de ker(f) et libre car constituée d’un seul vecteur

non nul. C’est donc un base de ker(f).

Comme dim(ker(f)) = 1, d’après le théorème du rang

dim(Im(f)) = dim(M2(C))− dim(ker(f)) = 3.

Or Im(f) ⊂ C2[X ] et dim(C2[X ]) = 3.

Donc Im(f) = C2[X ] et (1, X,X2) est une base de Im(f).

Correction de l’exercice 4 :

1. Astuce : si on remarque tout de suite que f(1) = 0 on peut dire que f n’est pas injective
et donc pas bijective !

Comme f est un endomorphisme et que R3[X ] est de dimension finie, dire que f est
bijective est équivalent à dire qu’elle est injective. Déterminons donc le noyau de f .

Par définition ker(f) = {P ∈ R3[X ]/f(P ) = 0}. Soit P = aX3+bX2+cX+d ∈ R3[X ].
On a alors

f(P ) = 0⇔ (X2 − 1)(6aX + 2b) +X(3aX2 + 2bX + c) = 0

⇔ 9aX3 + 4bX2 + (−6a+ c)X − 2b = 0

⇔















9a = 0
4b = 0
−6a+ c = 0
−2b = 0

⇔ a = b = c = 0

Donc ker(f) = {d/d ∈ R} 6= {0} et f n’est donc pas injective et ainsi, pas bijective.

2. Comme g est un endomorphisme et que M2(R) est de dimension finie (on peut faci-
lement trouver une famille génératrice finie), dire que g est bijective est équivalent à
dire qu’elle est injective. Déterminons donc le noyau de g.

Par définition ker(g) = {M ∈M2(R)/g(M) = 0}. Soit M =

(

a b
c d

)

∈M2(R). On a

alors

Exercices BCPST2 Page 6 Applications linéaires



g(M) = 0⇔

(

a b
c d

)

+

(

a c
b d

)

×

(

1 1
1 1

)

= 0

⇔

(

2a+ c a+ b+ c
b+ c+ d b+ 2d

)

=

(

0 0
0 0

)

⇔















2a+ c = 0
a+ b+ c = 0
b+ c+ d = 0
b+ 2d = 0

⇔















c = −2a
−a− 2d = 0
−2a− d = 0
b = −2d

⇔















c = −2a
3a = 0
d = −2a
b = −2d

⇔ a = b = c = d = 0

Donc ker(g) =

{(

0 0
0 0

)}

.

g est donc injective et comme c’est un endomorphisme en dimension finie, on peut en
déduire qu’elle est bijective.

3. On peut remarquer que dim(R3[X ]) = 4 = dim(R4). Comme, de plus, h est une
application linéaire, dire que h est bijective est équivalent à dire qu’elle est injective.
Pour cela déterminons le noyau de h.

Par définition ker(h) = {P ∈ R3[X ]/h(P ) = 0}.

Pour résoudre h(P ) = 0, écrivons P sous la forme P = aX3 + bX2 + cX + d. On a
alors :

h(P ) = 0⇔















8a+ 4b+ 2c+ d = 0
12a+ 4b+ c = 0
12a+ 2b = 0
6a = 0

⇔ a = b = c = d = 0.

Ainsi, ker(h) = {0} et h est donc injective.

On peut en déduire que h est bijective.

Correction de l’exercice 5 :

1. Soient Q et R deux polynômes de R3[X ] et λ ∈ R. On a alors :

f(Q+ λR) =

(

(Q+ λR)(a1) (Q+ λR)(a2)
(Q+ λR)(a3) (Q+ λR)(a4)

)

=

(

Q(a1) + λR(a1) Q(a2) + λR(a2)
Q(a3) + λR(a3) Q(a4) + λR(a4)

)

=

(

Q(a1) Q(a2)
Q(a3) Q(a4)

)

+ λ

(

R(a1) R(a2)
R(a3) R(a4)

)

= f(Q) + λf(R)

f est donc bien une application linéaire.

2. Montrons que ker(f) = {0}. Soit P ∈ R3[X ] :

f(P ) = 0⇔

(

P (a1) P (a2)
P (a3) P (a4)

)

= 0⇔















P (a1) = 0
P (a2) = 0
P (a3) = 0
P (a4) = 0

.

On peut reformuler cela en disant f(P ) = 0 si, et seulement si, P admet a1, a2, a3,
a4 pour racines. Or P est un polynôme de degré inférieur ou égal à 3 donc le seul
polynôme qui admet 4 racines distinctes est le polynôme nul.
Ainsi, f(P ) = 0 ⇔ P = 0. En conclusion, ker(f) = {0} ce qui signifie que f est
injective.

3. On sait que dim(R3[X ]) = 4 = dim(M2(R)) et f est une application linéaire injective,
donc f est bijective.

4. Notons Q = f−1

((

1 0
0 0

))

. En utilisant la définition d’une bijection réciproque on

peut écrire :

Q = f−1

((

1 0
0 0

))

⇔f(Q) =

(

1 0
0 0

)

⇔







Q(a1) = 1
Q(a2) = 0
Q(a3) = 0Q(a4) = 0

⇔

{

Q(a1) = 1
∃α ∈ R, Q = α(X − a2)(X − a3)(X − a4)

⇔

{

α(a1 − a2)(a1 − a3)(a1 − a4) = 1
∃α ∈ R, Q = α(X − a2)(X − a3)(X − a4)

⇔







α =
1

(a1 − a2)(a1 − a3)(a1 − a4)
∃α ∈ R, Q = α(X − a2)(X − a3)(X − a4)

⇔Q =
1

(a1 − a2)(a1 − a3)(a1 − a4)
(X − a2)(X − a3)(X − a4)
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Pour éviter de faire trop de calculs pour f−1(I2), il faut remarquer que f−1 est une

application linéaire et que I2 =

(

1 0
0 0

)

+

(

0 0
0 1

)

. Donc :

f−1(I2) = f−1

(

1 0
0 0

)

+ f−1

(

0 0
0 1

)

=
(X − a2)(X − a3)(X − a4)

(a1 − a2)(a1 − a3)(a1 − a4)
+

(X − a1)(X − a2)(X − a3)

(a4 − a1)(a4 − a2)(a4 − a3)
.

Correction de l’exercice 6 :

1. a) Pour tout (x, y) ∈ E2 on a :

f(x) = f(y)⇒g(f(x)) = g(f(y)) en appliquant la fonction g

⇒x = y car g ◦ f = id .

On a donc bien montré que f est injective.
L’application f n’est pas forcément surjective : on considère g : (x, y) 7→ x+ y de
R

2 dans R et f : x 7→ (x, 0) de R dans R
2.

On a g ◦ f = id mais f n’est pas surjective car (0, 1) n’a pas d’antécédent par f .

b) Pour tout z ∈ G, on a z = (g ◦ f)(z) = g(f(z)). z admet donc un antécédent par
l’application g.
L’application g est donc surjective.
L’application g n’est pas forcément injective : on reprend l’exemple précédent.
On a g ◦ f = id mais g n’est pas injective car g(1, 0) = g(0, 1) par exemple.

2. En ajoutant le fait que f et g sont linéaires et que tous les espaces sont de dimension
finie et de même dimension, on peut affirmer que f et g sont bijectives et que f−1 = g
car dans ce cas on a équivalence entre injectivité, surjectivité et bijectivité.

Correction de l’exercice 7 :

1. Notons Bc = (e1, e2, e3) la base canonique de R
3. On a alors

f(e1) = (1, 0,−1) = 1× e1 + 0× e2 + (−1)× e3

f(e2) = (1, 2, 1) = 1× e1 + 2× e2 + 1× e3

f(e3) = (−1, 0, 1) = (−1)× e1 + 0× e2 + 1× e3.

Donc MatBc
(f) =





1 1 −1
0 2 0
−1 1 1



.

2. Notons B1 = (e1, e2, e3) la base canonique de R
3. On rappelle que B2 = (1, X,X2)

est la base canonique de R2[X ]. On a :

f(e1) = f(1, 0, 0) = (X − 2)2 = 4− 4X +X2

f(e2) = f(0, 1, 0) = (X − 2)(X − 1) = 2− 3X +X2

f(e3) = f(0, 0, 1) = (X − 1)2 = 1− 2X +X2

Donc MatB1,B2
(f) =





4 2 1
−4 −3 −2
1 1 1



.

3. Notons B1 = (e1, e2) la base canonique de R
2 et B2 = (g1, g2, g3, g4, g5) la base

canonique de R
5. On a :

f(e1) = f(1, 0) = (1, 3,−3, 0, 1) = g1 + 3g2 − 3g3 + 0g4 + g5

f(e2) = f(0, 1) = (−1, 0, 2,−1, 1) = −g1 + 0g2 + 2g3 − g4 + g5

Donc MatB1,B2
(f) =













1 −1
3 0
−3 2
0 −1
1 1













.

4. Notons B1 = (e1, e2, e3, e4) la base canonique de R
4 et B2 = (1) la base canonique de

R.
On a

f(e1) = 2 = 2× 1

f(e2) = −3 = (−3)× 1

f(e3) = 0 = 0× 1

f(e4) = 4 = 4× 1.

Donc MatB1,B2
(f) =

(

2 −3 0 4
)

.

Correction de l’exercice 8 :

1. Soit Bc = (1, X,X2, X3) la base canonique de R3[X ]. On a :

f(1) = (X2 − 1)× 0 +X × 0 = 0 = 0× 1 + 0×X + 0×X2 + 0×X3

f(X) = (X2 − 1)× 0 +X × 1 = X = 0× 1 + 1×X + 0×X2 + 0×X3

f(X2) = (X2 − 1)× 2 +X × 2X = 4X2 − 2 = (−2)× 1 + 0×X + 4×X2 + 0×X3

f(X3) = (X2 − 1)× 6X +X × 3X2 = 9X3 − 6X = 0× 1 + (−6)×X + 0×X2 + 9×X3
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Donc MatBc
(f) =









0 0 −2 0
0 1 0 −6
0 0 4 0
0 0 0 9









.

2. a) La famille (Q0, Q1, Q2, Q3) est libre car constituée de polynômes non nuls et de
degrés deux à deux distincts. De plus card(B) = 4 = dim(R3[X ]).
Donc B est une base de R3[X ].

b) On a :

f(Q0) = (X2 − 1)Q′′

0 +XQ′

0 = X = 1Q0 + 0Q1 + 0Q2 + 0Q3

f(Q1) = (X2 − 1)Q′′

1 +XQ′

1 = 36X3 − 27X = 9Q1 = 0Q0 + 9Q1 + 0Q2 + 0Q3

f(Q2) = (X2 − 1)Q′′

2 +XQ′

2 = 0 = 0Q0 + 0Q1 + 0Q2 + 0Q3

f(Q3) = (X2 − 1)Q′′

3 +XQ′

3 = −8X
2 + 4 = 4Q3 = 0Q0 + 0Q1 + 0Q2 + 4Q3

Donc MatB(f) =









1 0 0 0
0 9 0 0
0 0 0 0
0 0 0 4









.

3. A et D sont deux matrices associées à f mais dans deux bases différentes. Notons P
la matrice de passage de la base Bc à la base B. D’après la formule de changement
de base pour les endomorphisme on a :

MatBc
(f) = PMatB(f)P−1 ⇐⇒ A = PDP−1.

Correction de l’exercice 9 :

1. Notons Bc = (e1, e2, e3) la base canonique de R
3. Soit (x, y, z) ∈ R

3. On a :

f(x, y, z) = 0⇔MatBc
(f)×MatBc

((x, y, z)) = 0

⇔





3 −2 4
2 −1 −3
5 −3 1



×





x
y
z



 = 0

⇔







3x− 2y + 4z = 0
2x− y − 3z = 0
5x− 3y + z = 0

⇔







3x− 2y + 4z = 0
5x− 3y + z = 0
5x− 3y + z = 0

L2 ← L1 + L2

⇔

{

−17x+ 10y = 0
z = −5x+ 3y

⇔











y =
17

10
x

z =
1

10
x

.

Donc ker(f) =

{(

x,
17

10
x,

1

10
x

)

/x ∈ R

}

= Vect((10, 17, 1)).

La famille ((10, 17, 1)) est génératrice de ker(f) et est libre car formée d’un seul vecteur
non nul donc c’est une base de ker(f) et dim(ker(f)) = 1.
D’après le théorème du rang, que l’on peut appliquer car R3 est de dimension finie, on
a :

dim(Im(f)) = dim(R3)− dim(ker(f)) = 2.

Il nous suffit de trouver une famille libre de deux vecteurs de Im(f) pour avoir une
base de Im(f).
D’après la matrice de f , on a

f(e1) = (3, 2, 5) et f(e2) = (−2,−1,−3).

La famille ((3, 2, 5), (−2,−1,−3)) est une famille libre de Im(f) car formée de deux
vecteurs visiblement non proportionnels, donc c’est une base de Im(f).

2. Soit P = aX2 + bX + c ∈ R2[X ]. On a :

g(P ) = 0⇔MatBc
(g)×MatBc

(P ) = 0

⇔









1 −1 0
2 0 3
−3 1 1
0 0 1









×





c
b
a



 = 0

⇔















c− b = 0
2c+ 3a = 0
−3c+ b+ a = 0
a = 0

⇔a = b = c = 0.

Donc ker(g) = {0}.
Il n’est donc pas possible de déterminer une base de ker(g).
D’après le théorème du rang, que l’on peut appliquer car R2[X ] est de dimension finie,

dim(Im(g)) = dim(R2[X ])− dim(ker(g)) = 3− 0 = 3.

De plus, d’après notre cours et la matrice de g, on a

Im(g) = Vect(g(1), g(X), g(X2))

= Vect(−3X2 + 2X + 1, X2 − 1, X3 +X2 + 3X).

La famille (−3X2 + 2X + 1, X2 − 1, X3 +X2 + 3X) est génératrice de Im(g) et cette
famille contient 3 vecteurs et dim(Im(g)) = 3, donc c’est une base de Im(g).
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3. Soit M =

(

a b
c d

)

∈M2(C). On a :

f(M) = 0⇔MatBc
(f)×MatBc

(M) = 0

⇔









1 0 0 1
0 i 1 0
0 1 −i 0
1 0 0 1









×









a
b
c
d









= 0

⇔















a+ d = 0
ib+ c = 0
b− ic = 0
a+ d = 0

⇔

{

d = −a
c = −ib

.

Donc ker(g) = Vect

((

1 0
0 −1

)

,

(

0 1
−i 0

))

.

La famille

((

1 0
0 −1

)

,

(

0 1
−i 0

))

est génératrice de ker(g) et est libre car formée de

deux vecteurs visiblement non proportionnels, donc c’est une base de ker(g).
D’après notre cours et la matrice de g, on a

Im(g) = Vect

(

g

((

1 0
0 0

))

, g

((

0 1
0 0

))

, g

((

0 0
1 0

))

, g

((

0 0
0 1

)))

= Vect

((

1 0
0 1

)

,

(

0 i
1 0

)

,

(

0 1
−i 0

)

,

(

1 0
0 1

))

= Vect

((

1 0
0 1

)

,

(

0 i
1 0

))

La famille

((

1 0
0 1

)

,

(

0 i
1 0

))

est génératrice de Im(g) et est libre car formée de deux

vecteurs visiblement non proportionnels, donc c’est une base de Im(g).

Correction de l’exercice 10 :

1. D’après les propriétés des matrices associées aux applications linéaires on a :

MatBc
(f2 − f − 2 id) = (MatBc

(f))2 −MatBc
(f)− 2MatBc

(id)

= A2 −A− 2I3

=





2 −1 1
−1 2 −1
1 −1 2



−





0 −1 1
−1 0 −1
1 −1 0



− 2





1 0 0
0 1 0
0 0 1





=





0 0 0
0 0 0
0 0 0



 .

On a donc MatBc
(f2 − f − 2 id) = MatBc

(0).

Par unicité de la matrice représentative d’une application linéaire, on a f2−f−2 id = 0.

2. D’après la question précédente, et parce que f est linéaire, on peut écrire :

f2 − f − 2 id = 0⇔ f ◦
1

2
(f − id) =

1

2
(f − id) ◦ f = id .

Donc f est une application linéaire bijective, c’est-à-dire un isomorphisme, et

f−1 =
1

2
(f − id).

3. D’après la question précédente, f−1(X2 + 1) =
1

2
(f(X2 + 1)− id(X2 + 1)).

Or id(X2 + 1) = X2 + 1 et comme f est linéaire, f(X2 + 1) = f(X2) + f(1).

D’après la matrice associée à f on sait aussi que f(X2) = 1 −X et f(1) = X2 −X ,
donc f(X2 + 1) = X2 − 2X + 1.

En conclusion, f−1(X2 + 1) = −X .

Correction de l’exercice 11 :

1. Par définition ker(f) = {P ∈ R2[X ]/f(P ) = (0, 0)}.

On ne connait pas ici f(P ) pour P quelconque, mais la donnée de f(1), f(X) et f(X2)
nous permet d’écrire la matrice de f relatives aux bases canoniques B1 de R2[X ] et
B2 de R

2 :

MatB1,B2
(f) =

(

1 2 −3
0 −1 1

)

.

On peut donc résoudre f(P ) = 0, avec P = aX2 + bX + c en écrivant :
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f(P ) = (0, 0)⇔ MatB1,B2
(f)×MatB1

(P ) = MatB2
((0, 0))

⇔

(

1 2 −3
0 −1 1

)

×





c
b
a



 =

(

0
0

)

⇔

{

c+ 2b− 3a = 0
−b+ a = 0

⇔

{

c = a
b = a

.

On a donc ker(f) = {aX2 + aX + a/a ∈ R} = Vect(X2 +X + 1).

La famille (X2 +X + 1) est génératrice de ker(f) et libre car elle ne contient qu’un
seul vecteur non nul.

En conclusion, la famille (X2 +X + 1) est une base de ker(f) et dim(ker(f)) = 1.

2. f ne peut pas être bijective car dim(R2[X ]) 6= dim(R2).

3. On considère un polynôme P quelconque de R2[X ]. On sait que P = aX2 + bX + c
avec (a, b, c) ∈ R

3.

Comme f est une application linéaire :

f(P ) = f(aX2 + bX + c) = af(X2) + bf(X) + cf(1)

= a(−3, 1) + b(2,−1) + c(1, 0) = (−3a+ 2b+ c, a− b)

Correction de l’exercice 12 :

Notons Bc la base canonique de R
3.

1. On cherche u1 = (1, y, z) ∈ R
3 tel que f(u1) = u1. On a

f(u1) = u1 ⇔MatBc
(f)×MatBc

(u1) = MatBc
(u1)

⇔T





1
y
z



 =





1
y
z





⇔







1 + y + z = 1
y = y
y = z

⇔

{

y + z = 0
y = z

⇔ y = z = 0.

On a donc u1 = (1, 0, 0).

Si on est astucieux on peut s’épargner les calculs !

2. On cherche u2 = (x, y, z) tel que f(u2) = u1 + u2 :

f(u2) = u1 + u2 ⇔ T





x
y
z



 =





1
0
0



+





x
y
z



⇔







x+ y + z = x+ 1
y = y
y = z

⇔

{

2y = 1
y = z

.

On choisit alors u2 =

(

0,
1

2
,
1

2

)

(le choix de x est libre).

3. Par définition ker(f) = {(x, y, z) ∈ R
3/f(x, y, z) = (0, 0, 0)}. On a :

f(x, y, z) = (0, 0, 0)⇔ T





x
y
z



 =





0
0
0



⇔







x+ y + z = 0
y = 0
y = 0

⇔

{

z = −x
y = 0

.

Donc ker(f) = {(x, 0,−x)/x ∈ R} = Vect((1, 0,−1)).
La famille ((1, 0,−1)) est génératrice de ker(f) et libre car constituée d’un seul vecteur
non nul, donc c’est une base de ker(f).

4. On pose u3 = (1, 0,−1) et B
′ = (u1, u2, u3).

On a MatBc
(u1, u2, u3) =









1 0 1

0
1

2
0

0
1

2
−1









et :

rgMatBc
(u1, u2, u3) = rg









1 0 1

0
1

2
0

0
1

2
−1









= rg







1 0 1

0
1

2
0

0 0 −1






L3 ← L3 − L2

= 3

Donc MatBc
(u1, u2, u3) est inversible, ce qui signifie que (u1, u2, u3) est une base de

R
3.

Enfin, comme on a f(u1) = u1, f(u2) = u1 + u2 et f(u3) = 0, la matrice de f dans la
base B

′ est

MatB′(f) =





1 1 0
0 1 0
0 0 0



 = L.

T et L sont donc deux matrices représentant le même endomorphisme dans deux
bases différentes, donc, d’après la formule de changement de base, ces matrices sont
semblables.
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Correction de l’exercice 13 :

1. On a :

rg(A) = rg





−3 2 2
−2 1 2
−2 2 1





= rg





−3 2 2
0 −1 2
0 2 −1



 L2 ← 3L2 − 2L1

L3 ← 3L3 − 2L1

= rg





−3 2 2
0 −1 2
0 0 3





L3 ← L3 + 2L2

= 3.

A est inversible donc f est bijective.

2. Par définition ker(f − idR2[X]) = {P ∈ R2[X ]/(f − idR2[X])(P ) = 0}.

En notant P = a+ bX + cX2 on a

(f − idR2[X])(P ) = 0⇔MatBc
(f − idR2[X])×MatBc

(P ) =





0
0
0





⇔(A− I3)





a
b
c



 =





0
0
0





⇔







−4a+ 2b+ 2c = 0
−2a+ 2c = 0
−2a+ 2b = 0

⇔







0 = 0
c = a
b = a

Donc E1 = {a+ aX + aX2/a ∈ R} = Vect(1 +X +X2).

La famille B1 = (1 + X + X2) est génératrice de E1 et libre car formée d’un seul
vecteur non nul, donc c’est une base de E1. De plus dim(E1) = card(B1) = 1.

3. Par définition ker(f + idR2[X]) = {P ∈ R2[X ]/(f + idR2[X])(P ) = 0}.

En notant P = a+ bX + cX2 on a

(f + idR2[X])(P ) = 0⇔MatBc
(f + idR2[X])×MatBc

(P ) =





0
0
0





⇔(A+ I3)





a
b
c



 =





0
0
0





⇔







−2a+ 2b+ 2c = 0
−2a+ 2b+ 2c = 0
−2a+ 2b+ 2c = 0

⇔a = b+ c

Donc E−1 = {b+ c+ bX + cX2/(b, c) ∈ R} = Vect(1 +X, 1 +X2).
La famille B2 = (1 + X, 1 + X2) est génératrice de E−1 et libre car formée de
deux vecteurs visiblement non proportionnels, donc c’est une base de E−1. De plus
dim(E−1) = card(B2) = 2.

4. B = (1 +X +X2, 1 +X, 1 +X2).

a) Montrons que MatBc
(B) est inversible :

rgMatBc
(B) = rg





1 1 1
1 1 0
1 0 1





= rg





1 1 1
0 0 −1
0 −1 0



 L2 ← L2 − L1

L3 ← L3 − L1

= rg





1 1 1
0 −1 0
0 0 −1



 L2 ↔ L3

= 3.

MatBc
(B) est inversible donc B est une base de R2[X ].

b) On a, d’après les questions 2. et 3. :

f(1 +X +X2) = 1 +X +X2

f(1 +X) = −(1 +X)

f(1 +X2) = −(1 +X2).

Donc D = MatB(f) =





1 0 0
0 −1 0
0 0 −1



.
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5. Commençons par remarquer que, d’après la formule de changement de base, A =
PDP−1.
Soit n ∈ N. On pose P(n) : « An = PDnP−1 ».

— On a d’une part A0 = I3 et d’autre part PD0P−1 = PP−1 = I3.
Donc P(0) est vraie.

— Soit n ∈ N. Supposons P(n) vraie. On a alors :

An+1 = An ×A

= PDnP−1 × PDP−1 d’après P(n) et la formule de changement de base

= PDn+1P−1 car PP−1 = I3.

Donc P(n+ 1) est vérifiée.

Grâce au principe de récurrence on a montré que pour tout n ∈ N, An = PDnP−1.

Correction de l’exercice 14 :

1. Soit P ∈ Cn[X ]. On sait que deg(P ) 6 n donc P s’écrit sous la forme
∑

k

= 0nakX
k.

On en déduit que P (X + 2) =
∑

k

= 0nak(X + 2)+. Comme deg((X + 2)k) = k, on

peut affirmer que deg(P (X + 2)) 6 n et donc deg(Φ(P )) 6 n.
Ainsi Φ(P ) ∈ Cn[X ].
De plus, soient P et Q deux éléments de Cn[X ] et λ un réel.
Alors :

Φ(P + λQ) = (P + λQ)(X + 2)− (P + λQ)(X)

= P (X + 2) + λQ(X + 2)− P (X) + λQ(X)

= Φ(P ) + λΦ(Q)

En conclusion Φ est une application linéaire de Cn[X ] dans Cn[X ], c’est-à-dire un
endomorphisme de Cn[X ].

2. a) Si P a un degré supérieur ou égal à 1 alors d’après le théorème de D’Alembert P
admet au moins une racine dans C. Notons α une racines de P .

Comme P appartient à ker(Φ) on sait que P (X + 2) − P (X) = 0 donc
P (α+ 2) = P (α) = 0.
Ainsi α + 2 est une racine de P . Par récurrence on peut alors montrer que pour
tout k ∈ N, α+ 2k est une racine de P .
P admet alors une infinité de racines, ce qui est absurde car le seul polynôme
admettant une infinité de racines est le polynôme nul qui n’est pas de degré
supérieur ou égal à 1.

b) D’après la question précédente aucun polynôme de degré supérieur ou égal à 1 ne
peut appartenir à ker(Φ). Donc ker(Φ) ⊂ C0[X ].
Réciproquement, soit P un polynôme de C0[X ]. P est donc un polynôme
constant : P (X) = c.
Donc Φ(P ) = P (X + 2)− P (X) = c− c = 0. Ainsi P ∈ ker(Φ).
En conclusion, ker(Φ) = C0[X ].

3. D’après le théorème du rang dim(Im(Φ)) = dim(Cn[X ])−dim(C0[X ]) = n+1−1 = n.

De plus, pour tout P ∈ Cn[X ], on peut écrire P =

n
∑

k=0

akX
k avec ak ∈ C.

On en déduit que :

Φ(P ) =

n
∑

k=0

ak(X + 2)k −

n
∑

k=0

akX
k = an(X + 2)n − anX

n +

n−1
∑

k=0

ak((X + 2)k −Xk)

On remarque que deg

(

n−1
∑

k=0

ak((X + 2)k −Xk)

)

6 n− 1.

De plus an(X + 2)n − anX
n = an

n
∑

i=0

(

n

i

)

X i2n−i − anX
n =

n−1
∑

i=0

(

n

i

)

an2
n−iX i.

Donc deg(an(X + 2)n − anX
n) 6 n− 1.

Par conséquent deg(Φ(P )) 6 n− 1 et donc Im(Φ) ⊂ Cn−1[X ].
En conclusion, Im(Φ) ⊂ Cn−1[X ] et dim(Im(Φ)) = dim(Cn−1[X ]) donc
Im(Φ) = Cn−1[X ].

Correction de l’exercice 15 :

1. On commence par trouver 1 comme racine évidente puis on factorise :

x3 − 2x2 − x+ 2 = (x− 1)(x2 − x− 2)

Donc les racines sont α = 1, β = −1 et γ = 2.

2. a) — Montrons que S est un sous-espace vectoriel de l’espace vectoriel de référence
R

N.
S est bien un sous-ensemble de R

N.
La suite nulle vérifie bien la relation de récurrence donnée donc la suite nulle
appartient à S et donc S n’est pas vide.
Soit u et v deux suites appartenant à S et λ un réel.
La suite u+ λv vérifie alors, pour tout n ∈ N :

(u+ λv)n+3 = un+3 + λvn+3

= 2un+2 + un+1 − 2un + λ(2vn+2 + vn+1 − 2vn)

= 2(u+ λv)n+2 + (u+ λv)n+1 − 2(u+ λv)n
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Donc u+ λv ∈ S

En conclusion, S est bien un sous-espace vectoriel de R
N et donc S est un

espace vectoriel.

— On remarque que :

2× 1n+2 + 1n+1 − 2× 1n = 1 = 1n+3.

Donc (αn)n∈N ∈ S.

De plus

2× (−1)n+2 + (−1)n+1 − 2× (−1)n = 2× (−1)n − (−1)n − 2× (−1)n

= −(−1)n = (−1)n+3.

Donc (βn)n∈N ∈ S.

Et enfin

2× 2n+2 + 2n+1 − 2× 2n = 2n+3 + 2× 2n − 2× 2n = 2n+3.

Donc (γn)n∈N ∈ S.

— Pour finir, montrons que la famille ((αn)n∈N, (β
n)n∈N, (γ

n)n∈N) est libre.

Soient a, b et c trois réels tels que :

∀n ∈ N, aαn + bβn + cγn = 0

En appliquant cela pour n = 0, n = 1 et n = 2, on obtient que a, b et c sont
obligés de vérifier :







a+ b+ c = 0
a− b+ 2c = 0
a+ b+ 4c = 0

⇔ a = b = c = 0.

Donc la famille ((αn)n∈N, (β
n)n∈N, (γ

n)n∈N) est libre.

b) — Montrons que f est une application linéaire.

Soient u et v deux éléments de S et λ un réel.

f(u+ λv) = ((u + λv)0, (u+ λv)1, (u+ λv)2)

= (u0 + λv0, u1 + λv1, u2 + λv2)

= f(u) + λf(v)

Donc f est une application linéaire.

— Pour tout (x, y, z) ∈ R
3 la donnée de :















u0 = x
u1 = y
u2 = z
∀n ∈ Nun+3 = 2un+2 + un+1 − 2un

défini bien une suite de S.

Donc tout élément de R3 admet un antécédent dans S et donc f est surjective.

— Déterminons le noyau de f .

On cherche donc à résoudre f(u) = (0, 0, 0), c’est-à-dire que l’on cherche les
suites de S dont les trois premier termes sont nuls.

On suppose que u ∈ S et (u0, u1, u2) = (0, 0, 0).

Il suffit alors de montrer par récurrence que pour tout n ∈ N, un = 0. (Je
vous laisse le faire ! !).

Donc f(u) = (0, 0, 0) =⇒ u = 0. Ainsi ker(f) = {0} et donc f est injective.

En conclusion f est un isomorphisme de S dans R
3.

c) D’après la question précédente et d’après notre cours, on peut affirmer que
dim(S) = dim(R3) = 3 (car S et R

3 sont isomorphes).

Ainsi, la famille ((αn)n∈N, (β
n)n∈N, (γ

n)n∈N) est une famille libre de S qui contient
3 vecteurs donc c’est une base de S.

3. D’après la question précédente, comme w ∈ S, on sait qu’il existe a, b et c trois réels
tels que :

∀n ∈ N, wn = aαn + bβn + cγn.

À l’aide des valeurs de w0, w1 et w2, on trouve que :

∀n ∈ N, wn = −
1

2
−

1

6
(−1)n +

2

3
2n.

Correction de l’exercice 16 :

1. import numpy

def powmat(A,m):

if m==0:

return numpy.eye(numpy.shape(A)[0])

else:

return numpy.dot(A,powmat(A,m-1))

2. a) M(a) est une matrice symétrique réelle donc diagonalisable.
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b) rg(M(a)) = rg





1 0 1
0 a 0
0 0 0



 L3 ← L3 − L1.

Donc M(a) est de rang 2 si a 6= 0, et de rang 1 si a = 0.

c) Si a = 0 : ker(f0) = Vect(
−→
i −
−→
k ,
−→
j ).

Si a 6= 0 : ker(fa) = Vect(
−→
i −
−→
k ).

d) fa(~u) = µ~u⇔







x+ z = µx
ay = µy
x+ y = µz

.

La deuxième ligne nous donne (a− µ)y = 0 et donc a = µ ou y = 0.

e) rg(M(a)− λI3) = rg





1 0 1− λ
0 a− λ 0
0 0 −λ(2− λ)



. sp(M(a)) = {0, a, 2}.

Si a = 0 : E0(M(0)) = Vect









1
0
−1



 ,





0
1
0







, E2(M(0)) = Vect









1
0
1







.

Si a = 2 : E0(M(2)) = Vect









1
0
−1







, E2(M(2)) = Vect









1
0
1



 ,





0
1
0







.

Si a 6= 0 et a 6= 2 : E0(M(a)) = Vect









1
0
−1







, E2(M(a)) = Vect









1
0
1







,

Ea(M(a)) = Vect









0
1
0







.

f) D =





0 0 0
0 a 0
0 0 2



 et P =





1 0 1
0 1 0
−1 0 1



.

3. M(a)3 = 4M(a).

4. On remarque que M(a)4 = 4M(a)2, donc on peut montrer par récurrence que pour
p ∈ N

∗, M(a)2p = 4p−1M(a)2 et pour p ∈ N, M(a)2p+1 = 4pM(a).
On peut aussi montrer directement par récurrence que

M(a)n =





2n−1 0 2n−1

0 (−2)n 0
2n−1 0 2n−1



.

Correction de l’exercice 17 :

1. a) Comme E est de dimension finie, Im(f + g), Im(f) et Im(g) sont bien de dimen-
sions finies, donc on peut parler des rangs de f + g, f et g.
On considère y ∈ Im(f + g). Alors il existe x ∈ E tel que :

y = (f + g)(x) = f(x) + g(x).

Or f(x) ∈ Im(f) et g(x) ∈ Im(g).
Donc f(x) = λ1f1 + . . .+ λpxp et g(x) = µ1y1 + . . .+ µkyk.
On a donc y = λ1x1 + . . .+ λpxp + µ1y1 + . . .+ µkyk.
Cela montre que Im(f + g) ⊂ Vect(f1, . . . , fp, g1, . . . , gk).

b) D’après la question précédente, on a :

rg(f+g) 6 dim(Vect(f1, . . . , fp, g1, . . . , gk)) 6 card(f1, . . . , fp, g1, . . . , gk) = p+k.

En conclusion, on a bien rg(f + g) 6 rg(f) + rg(g).

c) En appliquant, ce résultat de façon « astucieuse » on peut écrire :

rg(f) = rg(f + g + (−g)) 6 rg(f + g) + rg(−g) = rg(f + g) + rg(g).

On en déduit que rg(f)− rg(g) 6 rg(f + g).
De même rg(g) = rg(f + g − f) 6 rg(f + g) + rg(f) et donc −rg(f + g) 6

rg(f)− rg(g).
Ainsi, on a montré que |rg(f)− rg(g)| 6 rg(f + g).

2. a) Soit y ∈ Im(g). Il existe alors x ∈ E tel que y = g(x).
On a donc f(y) = f(g(x)) = 0 car f ◦ g = 0. Cela signifie que y ∈ ker(f).
On a donc montré que Im(g) ⊂ ker(f).

b) Comme f + g est bijectif on sait que rg(f + g) = dim(E).
Donc d’après la question 1. b) dim(E) 6 rg(f) + rg(g).
D’après la question précédente, on a aussi rg(g) 6 dim(ker(f)). Or d’après le
théorème du rang, dim(ker(f)) = dim(E)− rg(f).
Donc rg(g) 6 dim(E) − rg(f) =⇒ rg(g) + rg(f) 6 dim(E).
En conclusion dim(E) = rg(f) + rg(g).

Correction de l’exercice 18 :

1. Soit −→u ∈ ker(f). On a alors :

g ◦ f(−→u ) = g (f(−→u )) = g(0) = 0

Donc −→u ∈ ker(g ◦ f).
En conclusion ker(f) ⊂ ker(g ◦ f).
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2. • Sens direct :
Supposons que ker(g ◦ f) = ker(f). Soit −→u ∈ Im(f) ∩ ker(g).
On sait alors que g(−→u ) = 0 et il existe −→a ∈ E tel que −→u = f(−→a ).
Or on remarque que g−→u ) = g ◦ f(−→a ) = 0. Donc −→a ∈ ker(g ◦ f) = ker(f).
Ainsi f(−→a ) = 0 et donc −→u = 0.
On a bien Im(f) ∩ ker(g) = {0}.
• Réciproque :
Supposons que Im(f) ∩ ker(g) = {0}.
On sait déjà que ker(f) ⊂ ker(g ◦ f).
Soit −→u ∈ ker(g ◦ f). On a donc g(f(−→u )) = 0, et donc f(−→u ) ∈ Im(f) ∩ ker(g)

Ainsi, f(−→u ) = 0 et donc −→u ∈ ker(f).
En conclusion ker(f) = ker(g ◦ f).

3. Soit −→u ∈ Im(g ◦ f).
Alors il existe −→a ∈ E tel que −→u = g ◦ f(−→a ) = g (f(−→a )).
Donc −→u ∈ Im(g).
Ainsi Im(g ◦ f) ⊂ Im(g).

4. • Sens direct :
Supposons que Im(g ◦ f) = Im(g).

Soit −→u ∈ E. On cherche à écrire −→u sous la forme f(−→a )+
−→
b avec −→a ∈ E et

−→
b ∈ ker(g).

Analyse : Supposons que cette décomposition existe.

On aurait alors g(−→u ) = g ◦ f(−→a ) et
−→
b = −→u − f(−→a ).

Synthèse : Comme g(−→u ) ∈ Im(g) = Im(g ◦ f), il existe −→a ∈ E tel que
g(−→u ) = g ◦ f(−→a ).
On choisit donc ce −→a et on remarque que −→u = f(−→a ) +−→u − f(−→a ).
On a bien f(−→a ) ∈ Im(f) et −→u − f(−→a ) ∈ ker(g).
(car g(−→u − f(−→a )) = g(−→u )− g(f(−→a )) = 0)
Ainsi E = Im(f) + ker(g)

• Réciproque :
On suppose que E = Im(f) + ker(g).
On sait déjà que Im(g ◦ f) ⊂ Im(g).
Soit −→u ∈ Im(g).
Alors il existe −→a ∈ E tel que −→u = g(−→a ).

Comme −→a ∈ E, on peut écrire −→a = f(
−→
b ) +−→c avec −→c ∈ ker(g).

Donc −→u = g(f(
−→
b )).

Ainsi Im(g) ⊂ Im(g ◦ f) et donc Im(g) = Im(g ◦ f).

Correction de l’exercice 19 :

1. Si f est bijective alors pour tout entier k, fk est bijective. Mais comme il existe k tel
que fk = 0 ceci est absurde.
Donc f n’est pas bijective.

2. a) On cherche tous les réels a0, a1, · · · , ap−1 tels que a0x0 + a1f(x0) + · · · +
ap−1f

p−1(x0) = 0.
En appliquant fp−1 à cette égalité on obtient :

fp−1(a0x0 + a1f(x0) + · · ·+ ap−1f
p−1(x0)) = 0

⇒a0f
p−1(x0) + a1f

p(x0) + · · ·+ ap−1f
2p−2(x0) = 0

⇒a0f
p−1(x0) = 0⇒ a0 = 0

Donc a0x0 + a1f(x0) + · · · + ap−1f
p−1(x0) = 0 ⇔

{

a0 = 0
a1f(x0) + · · ·+ ap−1f

p−1(x0) = 0

On applique alors fp−2 à l’égalité et on obtient a1 = 0.
On répète l’opération et on a donc a0 = a1 = · · · = ap−1 = 0.
La famille (x0, f(x0), · · · , f

p−1(x0)) est donc libre.

b) Toute famille libre de E possède nécessairement moins de n vecteurs. Or
(x0, f(x0), · · · , f

p−1(x0)) est une famille libre de p vecteurs.
Donc p 6 n.

Correction de l’exercice 20 :

1. La famille (f(u1), . . . , f(un)) est une famille libre de Im(f) qui contient n vecteurs
donc dim(Im(f)) > n.

2. On cherche tous les réels a1, . . ., an tels que a1u1 + . . .+ anun = 0.
En appliquant f , grâce à sa linéarité, on obtient a1f(u1) + . . .+ anf(un) = 0.
Or, on sait que la famille (f(u1), . . . , f(un)) est libre.
Donc a1f(u1) + . . .+ anf(un) = 0⇒ a1 = . . . = an = 0.
La famille (u1, . . . , un) est donc libre.

3. — Comme f ◦ f = 0, si u ∈ Im(f) alors u = f(v) et donc f(u) = f(f(v)) = 0,
c’est-à-dire u ∈ ker(f).
Ainsi, Im(f) ⊂ ker(f).

— D’après le point précédent, dim(Im(f)) 6 dim(ker(f)). Et donc, en utilisant le
théorème du rang, on obtient 2 dim(Im(f)) 6 2n, c’est-à-dire dim(Im(f)) 6 n.
Or, dans la question 1., on a montré que dim(Im(f)) > n.
Donc on a dim(Im(f)) = n et, d’après le théorème du rang, dim(ker(f)) = n.

En conclusion, Im(f) ⊂ ker(f) et dim(Im(f)) = dim(ker(f)), donc Im(f) = ker(f).
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