Ezxercices : Applications linéaires

Pour commencer...

EXERCICE 1 : FAIRE SES GAMMES
Les applications suivantes sont-elles linéaires ? Justifier votre réponse.

L fi RIX] - R3
' P = (P(0),P'(0), P"(0)) -

fo: AMR) — R

2. M det(M)

, [ RIX] - RX]

: P PA)(X—1)+XP

y 1o AR~ Ao (R) (U € My (R) fixce).

M — MU+ MTU

EXERCICE 2 :

P

Soit f l'application définie sur .4, 1(R) (p > 2) par f ; = Z:z:k.
T k=1
P

On admet que dim(.#,1(R)) = p.
1. Montrer que f est une application linéaire.
2. Si cela est possible, déterminer une base du noyau de f. f est-elle injective ?
3. L’application f est-elle surjective ?

T
0

4. On note g 'application de R dans .#), 1 (R) définie par g(x) =

Montrer que f o g = idg. Que remarquez-vous ?

EXERCICE 3 :
Soit f l'application linéaire de .#2(C) dans C5[X]| définie par :

f <<Z 2)) =a(X — )2 +b(X +1)% + (X —1) + d(X +1).

On admet que dim(.#2(C)) = 4. Déterminer une base du noyau et de 'image de f.

Isomorphismes en dimension finie

EXERCICE 4 : FAIRE SES GAMMES
Les applications linéaires suivantes sont-elles bijectives ? Justifier vos réponses.

fZ Rg[X] — Rg[X]

L P = (X?-1)P'+XP -
g: Mr(R) — M(R) . (11
2. Moo MamTy %= )
h: R3[X] — R?
> P (PP, P, PYE)

EXERCICE 5 :
Soient a1, asz, as, ay des éléments de R distincts deux & deux. Soit f 'application définie

par :
Rg [X] — %2 (R

P oo <P(a1) P(az))

1. Montrer que f est linéaire.
2. Montrer que f est injective.

3. On admet que dim(.#(R)) = 4. Montrer que f est bijective.

4. Déterminer f~! (<(1) 8)) puis ().

EXERCICE 6 :
Soient F, F' et G trois espaces vectoriels.
1. Soient f une application de E dans F et g une application de F' dans G telles que
gof=idgq.
a) Montrer que f est injective. Est-elle surjective ?
b) Montrer que g est surjective. Est-elle injective ?

2. Onreprend les hypothéses de la question précédentes et on ajoute quelques hypotheéses :
f et g sont des applications linéaires et E, F' et G sont des espaces de dimension finie
et tous de méme dimension.

Que peut-on dire des applications f et g7
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Matrices et applications linéaires

EXERCICE 7 : FAIRE SES GAMMES
Les réponses seront rigoureusement justifiées.

1. Soit f € Z(R®) définie par

V(z,y,2) €R?,  f(z,y,2)=(x+y—22y, —z+y+2)

Déterminer la matrice de f relative a la base canonique de R3.
2. Soit f € Z(R? Ry[X]) définie par :
V(z,y,2) € R,
Déterminer la matrice de f relative aux bases canoniques de R? et Ry[X].
3. Soit f € .Z(R? R5) définie par :
V(x,y) 6R27 f(xvy): (I_ya3xa2y_3xa_yax+y)
Déterminer la matrice de f relative aux bases canoniques de R? et R?.

4. Soit f € .Z(R* R) définie par :

V(z,y,2,t) € R*, flz,y, z,t) = 22 — 3y + 4t.

Déterminer la matrice de f relative aux bases canoniques de R* et R.

EXERCICE 8 :

Soit f € Z(R3[X]) définie par
VP ERy[X],  f(P)=(X2—1)P"+XP.

1. Déterminer la matrice A de f relative a la base canonique %, de R3[X].

2. Onnote Qo = X, Q1 =4X3—3X,Qa=1¢et Q3 = —2X%+1 et on admet que
a) Justifier que & = (Qo, Q1,Q2, Q3) est une base de R3[X].

b) Déterminer la matrice D de f relative a la base £.

3. Quelle relation a-t-on entre A et D ?

flry,2) =2(X =22 +y(X —2)(X — 1)+ 2(X — 1)

EXERCICE 9 : FAIRE SES GAMMES

1. Déterminer une base du noyau et de I'image de endomorphisme f de R® dont la

3 -2 4
matrice dans la base canonique est A= |2 -1 -3
5 =3 1

2. Déterminer, si possible, une base du noyau et de I'image de ’application linéaire g de
R5[X] dans R3[X] dont la matrice relative aux bases canoniques des deux espaces est

1 -1 0
2 0 3
B= -3 1 1
0 0 1

. B 1 0 0 1 0 0 0 0
3. On admet que la famille Z# = (<0 0> , (0 0) , <1 0> , (0 1)) est une base de

M (C). Déterminer une base de 'image et du noyau de ’endomorphisme g de .#5(C)

1 0 0 1

. . 0 i 1 O

dont la matrice relative & la base & est C = 01 —i 0
1 0 0 1

EXERCICE 10 :
On considére f l'endomorphisme de Ry[X] dont la matrice dans la base canonique est

0O -1 1
donnéepar: A=|-1 0 -1
1 -1 0
1. Montrer que f? — f —2id = 0 (id désigne Uapplication identité de Ry[X]).
2. En déduire que f est un isomorphisme et exprimer f~! en fonction de f et id .

3. Calculer f~1(X? 4 1).

On mélange tout et on complique un peu!

EXERCICE 11 :
On considére Ry[X] muni de sa base canonique (1,X,X?) ainsi que Iapplication
f € Z(Ry[X],R?) définie par :

F1)=(1,0) f(X)=(2,-1) f(X?)=(=31).

1. Sans calculer f(P) pour P quelconque, déterminer une base et la dimension de ker(f).
2. L’application f est-elle bijective ?
3. Expliciter f(P) pour P polynoéme quelconque de Ry[X].
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EXERCICE 12 : MATRICES SEMBLABLES
On définit les deux matrices suivantes :

11
T=10 1
0 1

S O =

110
., L=[o 10
00 0

Le but de l’exercice est de montrer que les matrices T et L sont semblables. Il faudra
essayer de retenir la méthode employée dans cet exercice.

On note f ’endomorphisme de R? représenté par la matrice T dans la base canonique
de R3.

1. Déterminer un vecteur u; dont la premiére coordonnée dans la base canonique est
égale a 1 et tel que f(u1) = u.

2. Déterminer un vecteur us non nul et tel que f(us) = uy + us.

3. Déterminer une base du noyau de f.

4. Montrer que T et L sont semblables.

Indication : on pourra s’intéresser a la matrice représentative de f dans une base
construite a l'aide des questions précédentes.

EXERCICE 13 :
On note %, = (1, X, X?) la base canonique de Ry[X] et on considére f 'endomorphisme
de Ro[X] dont la matrice dans la base %, est :

-3 2 2
A=1-2 1 2
-2 2 1

1. A T’aide de la matrice A déterminer si I'application f est bijective.

2. Déterminer une base et la dimension de E; = ker(f — idg,[x]). On notera %, cette
base.

3. Déterminer une base et la dimension de E_; = ker(f + idg,[x]). On notera % cette
base.

4. On note 4 la famille obtenue en réunissant les vecteurs de %4 suivi de ceux de %>.
a) Démontrer que & est une base de Ry[X].
b) Déterminer la matrice D de f relative a la base 4.

5. On note P la matrice de passage de %, a A.
Démontrer que, pour tout n € N, A" = PD"P~ 1,

1l ne sera pas utile d’expliciter la matrice P.

EXERCICE 14 :
Soit n € N* et ® 'application :

d: Cu[X] — C,[X]
P +— P(X+2)-P(X)

1. Montrer que ® est un endomorphisme de C,[X].

2. a) Soit P € ker(®) tel que deg(P) > 1. Montrer a l’aide du théoréme de D’Alembert
que P admet une infinité de racines.

b) Conclure que ker(®) = Co[X].
3. En déduire que Im(®) = C,,_1[X].

EXERCICE 15 :
Soient S I'ensemble des suites réelles (uy,)nen vérifiant la relation :

Yn €N, Upyz = 2Upi2 + Unp1 — 2Uy,

et (wn)nen la suite appartenant a .S telle que wg =0, wy; = 1 et wg = 2.
1. Déterminer les racines «, 3 et v de I’équation 2® — 22% — z + 2 = 0.

2. a) Montrer que S est un espace vectoriel, puis que les suites (&")nen, (8" )nen et
(7" )nen forment une famille libre de S.

b) Soit f lapplication qui & tout élément u de .S associe f(u) = (ug, u1, uz). Montrer
que f est un isomorphisme de S dans R3.

¢) En déduire la dimension de S puis une base de S.

3. En déduire, pour tout n € N I'expression de w,, en fonction de n.
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Un peu d’abstraction

EXERCICE 16 : ORAL AGRO-VETO MODIFIE

1. Préliminaire informatique :

Ecrire une fonction Python powmat(A,m) qui renvoie la matrice A a la puissance
m-iéme. On pourra utiliser la fonction numpy.dot(M,N) qui renvoie le produit MN
sous forme de tableau (array).

1 0 1
Soit M(a)=10 a 0] oua€R.
1 0 1
Soient ' un espace vectoriel de dimension 3 et & = (Z, 7 E) une base de E.
Soit f, 'endomorphisme de E représenté par la matrice M (a)dans la base £.
2. a) Quel est le rang de M (a) ? Discuter selon la valeur de a.

b) Déterminer une base du noyau de f,. Discuter selon la valeur de a.

T=7-%

T=1+k
a) Montrer que &' = (U, 7, W) est une base de E.
b) Caleuler f,(W) et fo(W).

c¢) En déduire une matrice P et une matrice D, diagonale telles que
M(a) = PD,P".

3. On pose :

4. On prend dans cette partie a = —2.
a) La famille (M (—2), M(—2)3) est-elle libre ?
b) Soit n € N. Expliciter M (—2)".

EXERCICE 17 :
Soit E un espace vectoriel de dimension finie et F' un espace vectoriel.

1. Soient f,g € Z(E,F), B; = (x1,...,xp) une base de Im(f) et B, = (y1,...
base de Im(g).

,Yr) une

a) Montrer que Im(f + g) C Vect(z1,...,Tp, Y1, - Yk)-

b) En déduire que rg(f + g) < rg(f) + reglg).

¢) A l'aide de I'inégalité précédente, montrer que |rg(f) — rg(g)| < rg(f + g).
2. Soient f,g € Z(E) tels que fog=0et f+ g est bijectif.

a) Montrer que Im(g) C ker(f).

b) Montrer alors que rg(f) + rg(g) = dim(E).

EXERCICE 18 :
Soient E un K-espace vectoriel, f et g deux endomorphismes de E.

1. Montrer que ker(f) C ker(g o f).

2. f) = ker(f) <= Tm(f) Nker(g) = {0}
3. Montrer que Im(g o f) C Im(g).

4. Montrer que Im(g o f) = Im(g) < Im(f) + ker(g) = E.

On définit la somme de deux sous-espaces vectoriels F' et G par

Montrer que ker(g o

F+G={Z+7Y /7 cFety cG}

EXERCICE 19 :
Soit f € Z(F) ou E est de dimension n > 1. On suppose que f est nilpotent, c’est-a-dire
qu’il existe un entier k& > 1 tel que f* = 0.

1. Montrer que f n’est pas bijective.
2. Soit p le plus petit entier tel que f? =0 et 29 € E tel que fP~!(xq) # 0.
a) Montrer que (zo, f(zo), -, f*"'(20)) est une famille libre.

b) En déduire que p < n.

EXERCICE 20 :

Soit E un R-espace vectoriel de dimension 2n (n € N*). On considére f un endomor-
phisme de E tel que fo f =0.

On suppose, de plus, qu’il existe des vecteurs ui,
(f(u1),-.., f(un)) est libre.

1. Montrer que dim(Im(f)) > n.

2. Montrer que la famille (ug,...

3. Montrer que ker(f) = Im(f).

.., Uy tels que la famille

, Uy ) est libre.
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Correction
CORRECTION DE L’EXERCICE 1 :
1. Soient @ et R deux polynomes de R[X] et a un réel. On a :
f1(aQ + R) = ((aQ + R)(0), (aQ + R)'(0), (aQ + R)"(0))
= (aQ(0) + R(0),aQ'(0) + R'(0),aQ"(0) + R"(0))
= a(Q(0), Q'(0), Q"(0)) + (R(0), R'(0), R"(0))
=af1(Q) + f1(R)

Donc fi est une application linéaire.

2. On a det(2]) = det (2 0) — 4 et 2det(Iy) = 2. Done fo(215) # 2fa(I).

0 2
f2 n’est pas une application linéaire.
3. Soient @ et R deux polynémes de R[X] et a un réel. On a :

f3(aQ + R) = (aQ + R)(1)(X — 1) + X (aQ + R)’
= (aQ(1) + R(1)) (X = 1) + X (aQ" + R')
=a(QM)(X -1+ XQ)+R)X -1+ XR
af3(Q) + f3(R)

Donc f3 est une application linéaire.
4. Soient K et L deux matrices de .4, (R) et a un réel. On a :

fi(aK + L) = (aK + L)U + (aK + L)TU
=aKU+ LU +aKTU + LTU
=afy(K) + fa(L)

Donc f; est une application linéaire.

par linéarité de la transposition

CORRECTION DE L’EXERCICE 2 :

Z1 Y1
1. Soient X = et Y = | ! | deux éléments de ., 1(R) et a € R. On a :
Tp Yp
ary + Y1 »
flaX +Y)=f : = (azk + yr)
az, + yp k=1
p p
=a) w4 )
k=1 k=1
=af(X)+ f(Y)

L’application f est bien linéaire.

. Afin de déterminer si f est injective déterminons son noyau. Par définition

ker(f) = {X € A1 (R)/f(X) =0}

= {X S tﬂp,l(R)/fEl +...tx,= 0}
Z1
= : J(z1,. . 2pq) ERPTE
Tp—1
—T1 — ... — Tp-1
1 0 0
0 1
0 :
= Vect N I N R )
0 : 1
0
-1) |\ ] -1
1 0 0
1
0 0
On peut facilement montrer que la famille N I I O , qui est
0 i 1
0
-1) -1
génératrice de ker(f), est libre.
1 0 0
0 1
0 :
Ainsi N I U U ) est une base de ker(f).
0 : 1
0
-1/ |} -1

On voit donc que ker(f) # {0} ainsi, f n’est pas injective.
Deux méthodes pour déterminer si f est surjective.

— Méthode 1 : f est une application de . 1(R) dans R. Il nous faut donc déter-
miner si tout élément de R admet un antécédent par f.

a
0

Soit @ € R. On peut facilement remarquer que a = f
0

Donc tout élément de R admet un antécédent par f ce qui signifie que f est

surjective.
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— Methode 2 : On sait que Im(f) est un sous-espace vectoriel de R. La famille ((1 _.1 est génératrice de ker(f) et libre car constituée d’un seul vecteur
Or R est un espace vectoriel de dimension 1 donc ses seuls sous-espace vectoriels 2 2
sont {0} et R. non nul. C’est donc un base de ker(f).
1 Comme dim(ker(f)) = 1, d’apres le théoréme du rang
0
On peut facilement remarquer que Im(f) # {0} car par exemple f ) =
(:) dim(Im(f)) = dim(#2(C)) — dim(ker(f)) = 3.
1#0.
Donc on a Im(f) = R. Or Im(f) C C[X] et dim(C,[X]) = 3.
4. Pour tout z € R Donc Im(f) = Ca[X] et (1, X, X?) est une base de Im(f).
x
0 CORRECTION DE L’EXERCICE 4 :
(fog)@)=flg@)=f|]|.||=2+0+...+0=2z
0
1. Astuce : si on remarque tout de suite que f(1) = 0 on peut dire que f n’est pas injective
On a donc f o g = idg. et donc pas bijective !
On peut remarquer que méme s'il existe une fonction g telle que fog = id, la fonction Comme f est un endomorphisme et que R3[X] est de dimension finie, dire que f est
[ n’est pas pour autant bijective!! bijective est équivalent a dire qu’elle est injective. Déterminons donc le noyau de f.
Par définition ker(f) = {P € R3[X]/f(P) = 0}. Soit P = aX3*+bX*+cX +d € R3[X].
CORRECTION DE L’EXERCICE 3 : On a alors
Commengons par déterminer une base du noyau de f :
F <<a b>) 0 f(P) =0+ (X?-1)(6aX +2b) + X(3aX? +2bX +¢) =0
¢ d & 9aX? + 4bX? + (—6a+ )X — 2b =0
Sa(X —i)? +b(X +1)? + (X —1) +d(X +1) =0 9a = 0
2 . . . P s _
Sla+b)X*+ (—2ai+2bi+c+d)X —a—-b—ic+id=0 - 4b6 0 . e a—bec—0
a+b=0 —6a+c =
&{ —2ai42bi+c+d=0 —2b=0
—a—b—ic+id=0
=—a
o { —dai+ 2 =0 Donc ker(f) = {d/d € R} # {0} et f n’est donc pas injective et ainsi, pas bijective.
d=c
2. Comme g est un endomorphisme et que .#2(R) est de dimension finie (on peut faci-
b= —a lement trouver une famille génératrice finie), dire que g est bijective est équivalent a
= 2: 221.a dire qu’elle est injective. Déterminons donc le noyau de g.
= 2ia
1 ) Par définition ker(g) = {M € .#>(R)/g(M) = 0}. Soit M = (Z Z) € M>(R). On a
a —a —
Donc ker(f) = {(21@ 21&) Ja € (C} = Vect ((21 21)). alors
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g(M)—O<:><Z 2>+<Z 2>><G 1>_

0
- 2a+c¢c a+b+cy (0 O
b+c+d b+2d )] \0 O

20+c=0
at+b+ec=0

TN btetd=0
b+2d=0
c=—2a

o —a—2d=0
—2a—d=0
b=-2d
c=—2a
3a=0

= d— —2a Sa=b=c=d=0
b=-2d

Done ker(g) {(8 8) }

g est donc injective et comme c’est un endomorphisme en dimension finie, on peut en
déduire qu’elle est bijective.

3. On peut remarquer que dim(R3[X]) = 4 = dim(R?). Comme, de plus, h est une
application linéaire, dire que h est bijective est équivalent a dire qu’elle est injective.
Pour cela déterminons le noyau de h.

Par définition ker(h) = {P € R3[X]/h(P) = 0}.

Pour résoudre h(P) = 0, écrivons P sous la forme P = aX> + bX? + cX 4+ d. On a
alors :

8a+4b+2c+d=0

12a4+4b+c¢=0

12a+2b=0

6a =0

h(P)=0< Sa=b=c=d=0.

Ainsi, ker(h) = {0} et h est donc injective.

On peut en déduire que h est bijective.

CORRECTION DE L’EXERCICE 5 :

1. Soient @ et R deux polynomes de R3[X] et A € R. On a alors :

Q+ AR)(a1) (Q+ AR)(a2)
HQ+AR) ( (Q + AR) a;l), Q-+ /\R)(ai))
_ (Q a1) + AR(a1) Q(a2) + )\R(az))
B Q a3) + AR ag) Q(a4) + )\R(a4)
_ (Qla1) az R(a1) R(az)
B (Q a3) a4 ) + /\ <R(a3) R(a4)>
(@) + M (R)
f est donc bien une application linéaire.
2. Montrons que ker(f) = {0}. Soit P € R3[X] :
(@) P Plon) 0
_ P(a1) Pla2)\ _ Paz) =0
rer=0e (p) Bed) =% bl o
P(a4) = 0

On peut reformuler cela en disant f(P) = 0 si, et seulement si, P admet a;, as, as,
a4 pour racines. Or P est un polyndéme de degré inférieur ou égal a 3 donc le seul
polynéme qui admet 4 racines distinctes est le polyndéme nul.

Ainsi, f(P) = 0 & P = 0. En conclusion, ker(f) =
injective.

{0} ce qui signifie que f est

3. On sait que dim(R3[X]) = 4 = dim(#2(R)) et f est une application linéaire injective,

donc f est bijective.
10

4. Notons Q = f~! (<O O)) En utilisant la définition d’une bijection réciproque on

peut écrire :
o=r+((4 9)) wra- <; g) o{ Ga
Ja e R Q =X

—a2)(X —a3)(X —a4)

a1 — CLQ a1 — ag)(al — a4) =1

JaeR, Q=a(X —a2)(X —a3)(X — as)

{2
{ 1
{5

(a1 —ag)(a1 — az)(a1 — as)
JaeR, Q=a(X —a)(X —a3)(X —as)

1

" (a1 — az)(as — as)(ar — aq)

(X — CLQ)(X - ag)(X - a4)
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Pour éviter de faire trop de calculs pour f~!(I), il faut remarquer que f~* est une | 2. Notons %; = (e1,ez,e3) la base canonique de R®. On rappelle que %> = (1, X, X?)
1 O) n (O O) Donc - est la base canonique de R3[X]. On a :

application linéaire et que I» = (O 0 01

fler) = £(1,0,0) = (X —2)? =4 —4X + X?

FYD) = -1 (1 0>+f1 (0 0) fle2) = £(0,1,0) = (X — )§X—1):2—3X+X2

0 0 0 1 B B o 9
(X~ 02)(X —ag)(X — ) | (X — a)(X — ) (X — a) fles) = f(0,0,1) = (X = 1)"=1-2X 4+ X

" (a1 —az2)(a1 —az)(ar —as) | (as —a1)(as — az)(ag — az)’ 4 2 1

Donc Matg, «,(f) = -4 -3 -2
1 1 1

CORRECTION DE L’EXERCICE 6 : i )
3. Notons %, = (e1,es) la base canonique de R® et B2 = (g1,92,93,94,95) la base

1. a) Pour tout (z,y) € E* ona: canonique de R®. On a :
f(@) = f(y) =9(f(x)) = g(f(v)) en appliquant la fonction g fler) = f(1,0) = (1,3,-3,0,1) = g1 + 3go — 3g5 + 0gs + gs
ST=Y car go f =id. fle2) = £(0,1) = (=1,0,2,~1,1) = —g1 + Ogz + 295 — g1 + gs
On a donc bien montré que f est injective. 1 —1
L’application f n’est pas forcément surjective : on considére g : (z,y) — z+y de 3 0
R? dans R et f : z + (z,0) de R dans R?. Donc Matg, ,(f) = | =3 2
H] 32

On a go f =id mais f n’est pas surjective car (0,1) n’a pas d’antécédent par f. 0 -1

b) Pour tout z € G, on a z = (go f)(2) = g(f(2)). z admet donc un antécédent par 1 1
application g. 4. Notons %) = (e1, ez, e3,e4) la base canonique de R? et , = (1) la base canonique de
L’application g est donc surjective. R.
L’application g n’est pas forcément injective : on reprend l’exemple précédent. On a

On a go f = id mais g n’est pas injective car g(1,0) = ¢(0, 1) par exemple.
2. En ajoutant le fait que f et g sont linéaires et que tous les espaces sont de dimension fle)
finie et de méme dimension, on peut affirmer que f et g sont bijectives et que f~! =g fle2) = = (_3) x 1
car dans ce cas on a équivalence entre injectivité, surjectivité et bijectivité. f(es)
(e4)

CORRECTION DE L’EXERCICE 7 :
Donc Mat =(2 -3 0 4).
1. Notons %. = (e1, e2,e3) la base canonique de R*. On a alors #1.2:(f) ( )

CORRECTION DE L’EXERCICE 8 :

fler) = (1,0,—1) =1 xer+0x e+ (1) xes 1. Soit . = (1, X, X2, X?) la base canonique de R3[X]. On a :

f(€2):(1,2,1):1X€1—|—2x€2—|—1><e3

fles) = (=1,0,1) = (=1) x e + 0 x e2 + 1 x e3. f)=(X?-1)x0+Xx0=0=0x14+0xX+0xX>+0xX?>
fX)=(X?—D)x0+Xx1=X=0x1+1xX+0xX?+0x X?
1 I -1 2 2 _ 2 9 _ (_ 2 3
Done Mats (f)= [ 0 2 0 |. F(XH)=(X"—1)x24 X x2X =4X°-2=(-2)x14+0x X +4x X°+0x X
-1 1 1 X)) =(X? 1) x6X + X x3X?=9X% - 6X =0x1+(-6)x X +0x X?+9x X3

Exercices BCPST?2 Page 8 Applications linéaires



00 -2 0
01 0 -6
Donc Matg, (f) = 00 4 0
0 0 O 9

2. a) La famille (Qo, @1, Q2,@3) est libre car constituée de polyndmes non nuls et de
degrés deux a deux distincts. De plus card(#) = 4 = dim(R3[X]).
Donc £ est une base de R3[X].

b) On a:
f(Qo) = (X* —1)Qf + XQp = X =1Qo + 0Q1 + 0Q2 + 0Qs3
Q1) = (X? = 1)QY + XQ} =36X> — 27X = 9Q1 = 0Q0 + 9Q1 + 0Q2 + 0Q3
f(Q2) = (X? = 1)Q5 + XQb = 0=0Qo + 0Q1 + 0Q2 + 0Q3
f(Q3) = (X? = 1)Q4 + XQ5 = —8X? +4 = 4Q3 = 0Q0 + 0Q1 + 0Q2 + 4Q3
1 0 0 O
Donc Matg(f) = 8 g 8 8
0 0 0 4

3. A et D sont deux matrices associées & f mais dans deux bases différentes. Notons P
la matrice de passage de la base %, a la base 4. D’aprés la formule de changement
de base pour les endomorphisme on a :

Matg, (f) = PMatg(f)P~! <= A= PDP "

CORRECTION DE L’EXERCICE 9 :
1. Notons 4. = (e1, e2,e3) la base canonique de R3. Soit (z,7,2) € R®. On a :

flz,y,2z) =0 =Matg, (f) x Matg, ((z,y,2)) =0

3 -2 4 T
<2 -1 3] x|y|=0
5 -3 1 z

3x —2y+4z=0
20 —y—32=0
Sr—3y+2=0

{ 30— 2y+42=0
|
|

=

3

ot —3y+z=0

br—3yt+.—0 L2 litle
7,
- =17z 4+ 10y =0 Y= 110
z= =5z + 3y = —
10

Donc ker(f) = { (:v, %x, %x) /x € R} = Vect((10,17,1)).

La famille ((10,17,1)) est génératrice de ker(f) et est libre car formée d’un seul vecteur
non nul donc c’est une base de ker(f) et dim(ker(f)) = 1.
D’aprés le théoréme du rang, que I'on peut appliquer car R? est de dimension finie, on
a:

dim(Im(f)) = dim(R?) — dim(ker(f)) = 2.
Il nous suffit de trouver une famille libre de deux vecteurs de Im(f) pour avoir une
base de Im(f).
D’aprés la matrice de f, on a

fler) =(3,2,5) et fle2) =(-2,-1,-3).

La famille ((3,2,5),(—2,—1,—3)) est une famille libre de Im(f) car formée de deux
vecteurs visiblement non proportionnels, donc c’est une base de Im(f).

. Soit P =aX?+bX +c€Ry[X]. On a:

g(P) =0 <Matg,_(g) x Matg, (P) =0

1 -1 0 .
2 0 3
“l=3 1 1 Z =0
0 0 1
c—b=0
2c+3a =0
< —3c+b+a=0
a=0

Sa=b=c=0.

Donc ker(g) = {0}.
Il n’est donc pas possible de déterminer une base de ker(g).
D’aprés le théoréme du rang, que l’on peut appliquer car Ro[X] est de dimension finie,

dim(Im(g)) = dim(R2[X]) — dim(ker(g)) =3 — 0 = 3.

De plus, d’aprés notre cours et la matrice de g, on a

Im(g) = Vect(g(1), g(X), 9(X?))
= Vect(—3X? +2X +1,X? -1, X3 + X? + 3X).

La famille (=3X% +2X 4+ 1, X% — 1, X + X? + 3X) est génératrice de Im(g) et cette
famille contient 3 vecteurs et dim(Im(g)) = 3, donc c’est une base de Im(g).
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b

. a
3. Soit M = (c d

) € #>(C). On a:

f(M)=0<Matg, (f) x Matg, (M) =0

1 0 0 1 a

N 0 i 1 O b —0
01 —-i 0 cl|
1 0 0 1 d
a+d=0
ib+c=0

“Y b—ic=0
a+d=

- d=—a
c= —ib

Donc ker(g) = Vect (((1) _01> ) (31 é))
. 1 0 0
La famille ((O _1> , (—i

deux vecteurs visiblement non proportionnels, donc ¢’est une base de ker(g).

é)) est génératrice de ker(g) et est libre car formée de

D’aprés notre cours et la matrice de g, on a

it =t (o (o 5)) (0 0))0(( )2 (0 7))
)-(0)- (5 0) 60 )
v 0)-(00))

La famille <((1) (1)) , <(1) 0>) est génératrice de Im(g) et est libre car formée de deux

——

vecteurs visiblement non proportionnels, donc c’est une base de Im(g).

CORRECTION DE L’EXERCICE 10 :

1. D’aprés les propriétés des matrices associées aux applications linéaires on a :

Matz, (f2 — f —2id) = (Mat, (f))* — Mate, (f) — 2Matg, (id)

=A% - A -2
2 -1 1 0 -1 1 1 00
=[-1 2 —-1|-|-1 0 —-1}]-2{0 1 0
1 -1 2 1 -1 0 0 0 1
00 0
=(0o 0 0
0 0 0

On a donc Matg, (f% — f — 2id) = Matg,(0).
Par unicité de la matrice représentative d’une application linéaire, on a f2— f—2id = 0.

2. D’aprés la question précédente, et parce que f est linéaire, on peut écrire :

(f—id)o f=id.

N =

f2—f—2id=O<:>fo%(f—id):

est une application linéaire bijective, c’est-a-dire un isomorphisme, et

(f - id).

Donc

)

-1 _ +

I =3
1

3. D’aprés la question précédente, f~H (X2 +1) = 5(]"()(2 +1) —id(X? +1)).

Orid(X? +1) = X% 4 1 et comme f est linéaire, f(X2 + 1) = f(X?) + f(1).
D’aprés la matrice associée a f on sait aussi que f(X?) =1— X et f(1) = X* - X,
donc f(X?+1)=X?-2X +1.

En conclusion, f~}(X? +1) = —X.

CORRECTION DE L’EXERCICE 11 :

1. Par définition ker(f) = {P € Ro[X]/f(P) = (0,0)}.

On ne connait pas ici f(P) pour P quelconque, mais la donnée de f(1), f(X) et f(X?)
nous permet d’écrire la matrice de f relatives aux bases canoniques %; de Ry[X] et
%2 de RQ :

Mat:@h:@z (f) = (é _21 _13) :

On peut donc résoudre f(P) =0, avec P = aX? + bX + ¢ en écrivant :
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.f(P) = (Oa O) < Matg, 2, (f) X Mat g, (P) = Mat{%(((), O))

<6 50 0) =)
0 -1 1 —\0
a
c+2b—3a=0 c=a
{—b—i—azO <:>{b=a

On a donc ker(f) = {aX? +aX +a/a € R} = Vect(X? + X +1).
La famille (X2 4+ X + 1) est génératrice de ker(f) et libre car elle ne contient quun
seul vecteur non nul.

En conclusion, la famille (X% + X 4 1) est une base de ker(f) et dim(ker(f)) = 1.
2. f ne peut pas étre bijective car dim(Ry[X]) # dim(R?).

3. On considére un polynéme P quelconque de Ro[X]. On sait que P = aX? 4+ bX + ¢
avec (a,b,c) € R3,

Comme f est une application linéaire :

f(P) = f(aX?+bX 4+ ¢) = af(X?) +bf(X) +cf(1)
=a(-3,1)+b(2,-1) 4+ ¢(1,0) = (—=3a+2b+c,a — b)

CORRECTION DE L’EXERCICE 12 :
Notons 2. la base canonique de R?.

1. On cherche u; = (1,y,2) € R? tel que f(u1) = u;. On a

f(u1) = u; ©Matg, (f) x Matg, (u1) = Matg, (u1)

1 1

STl lyl =1y
z z
l1+y+2z=1

<4y Y=y
y==z

<:>{ y+z=0 Sy=2z=0
y==z

On a donc u; = (1,0,0).

Si on est astucieux on peut s’épargner les calculs!

2. On cherche us = (x,y, 2) tel que f(u2) = u1 +us :
T 1 T r+yt+z=x+1 9y — 1
fluw)=wm+ueT|y|=|0]+|y| < y=y @{ y:_z
z 0 z Yy=2z y
. 11 . .
On choisit alors us = (O, 3 5) (le choix de x est libre).
3. Par définition ker(f) = {(z,y, 2) € R*/f(z,y,2) = (0,0,0)}. On a :
T 0 r+y+z2z=0 PR
P =000 T [y] = (0] «{ y=0 -{:2,
2 0 y=0 v=

Donc ker(f) = {(z,0, —z)/z € R} = Vect((1,0,—1)).
La famille ((1,0, —1)) est génératrice de ker(f) et libre car constituée d’un seul vecteur
non nul, donc c¢’est une base de ker(f).

4. On pose uz = (1,0,—1) et B’ = (u1,u2,us3).

1 0 1
1
On a Matg, (u1,us, us) = 0 % 0 | et:
0 = -1
2
1 0 1
0 1 0
rgMat g, (u1, uz, us) =g %
0 = -1
2
1 0 1
1
=1g|0 3 0 L3 < L3 — Lo
0 0 -1
=3

Donc Matg, (u1, uz, u3) est inversible, ce qui signifie que (u1,us,us3) est une base de
R3.
Enfin, comme on a f(u1) = u1, f(u2) = u1 + uz et f(us) =0, la matrice de f dans la
base %' est

1 10

Matg (f)=10 1 0] =L.

0 0 O

T et L sont donc deux matrices représentant le méme endomorphisme dans deux

bases différentes, donc, d’aprés la formule de changement de base, ces matrices sont
semblables.
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CORRECTION DE L’EXERCICE 13 :

1. Ona:
-3 2 2
rg(A)=rg| -2 1 2
-2 21
-3 2 2
=TIg 0 -1 2 LQ — 3L2 — 2L1
0 2 —1 L3+ 3L3—21,
-3 2 2
=rg| 0O -1 2
0 0 3 L3 — L3 + 2L2

=3.

A est inversible donc f est bijective.

En notant P=a+bX +cX? on a

0
(f - idR2[X])(P) =0 &Matz, (f — idR2[X]) x Mat g, (P) =1{0
0

a 0
bl =10
c 0

—4a+2b+2¢c=0
= —2a+2¢c=0

<:>(A — Ig)

—2a+2b=0
0=0

~ c=a
b=a

Donc F; = {a+aX +aX?/a € R} = Vect(1 + X + X?).

La famille 2, = (1 + X 4+ X?) est génératrice de E; et libre car formée dun seul

vecteur non nul, donc c¢’est une base de E;. De plus dim(E;) = card(%;) = 1.

3. Par définition ker(f + idg,[x]) = {P € Ro[X]/(f + idg,[x7)(P) = 0}.

En notant P=a+bX +cX2on a

0
(f+ idR2[X])(P) =0<Matg, (f + idRz[X]) x Matg_ (P)= |0
0

a 0
SA+L)[b| =10
c 0

—2a+2b+2¢c=0
= —2a+2b+2¢c=0
—2a+2b+2¢c=0

Sa=b+c

Donc E_; = {b+c+bX 4+ cX?/(b,c) € R} = Vect(1 + X, 1+ X?).

La famille %4, = (1 + X,1 + X?) est génératrice de E_; et libre car formée de
deux vecteurs visiblement non proportionnels, donc c’est une base de F_;. De plus
dim(E_;) = card(%s) = 2.

B=1+X+X21+X,1+X3).

a) Montrons que Matg, (%) est inversible :

1 11
rgMatg (#)=1g|(1 1 0

1 01
1 1 1

=T1g 0 0 -1 Lo+ Ly — 14
0 -1 0 L3y« Lz — 14
1 1 1

=7T1g 0 -1 0 Lo < L3
0 0 -1

=3.

Mat g, (%) est inversible donc % est une base de Ry[X].
b) On a, d’aprés les questions 2. et 3. :
FO+X+XH=1+X+X?
fA+X)=—-(14+X)
fI+ X% =—(1+X?.
0 0

1
Donc D =Matg(f)=|0 -1 0
0o 0 -1
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CORRECTION DE L’EXERCICE 14 :
1.

2.

Commengons par remarquer que, d’aprés la formule de changement de base, A =
PDP L.

Soit n € N. On pose Z(n) : « A" = PD"P~ ' »

— On a d’une part A° = I3 et d’autre part PD°P~! = PP~ = I;.
Donc Z(0) est vraie.

— Soit n € N. Supposons #(n) vraie. On a alors :

AT = A" x A
=PD"P~! x PDP—1 d’aprés £(n) et la formule de changement de basg
= pprtip-1 car PPl =14

Donc & (n + 1) est vérifiée.

Grace au principe de récurrence on a montré que pour tout n € N, A" = PD"P~ L.

Soit P € C,[X]. On sait que deg(P) < n donc P s’écrit sous la forme Z = 0"ap X",

k

On en déduit que P(X +2) = Z = 0"ap(X + 2)+. Comme deg((X +2)*) =k, on

peut affirmer que deg(P(X + 2))
Ainsi ®(P) € Cu[X].

De plus, soient P et ) deux éléments de C,,[X] et A un réel.
Alors :

n et donc deg(®(P)) < n.

(P +AQ) = (P +AQ)(X +2) — (P + \Q)(X)
= P(X +2) + AQ(X +2) — P(X) + AQ(X)
— 3(P) + 18(Q)

En conclusion ® est une application linéaire de C,[X] dans C,[X], c’est-a-dire un
endomorphisme de C,,[X].

a) Si P a un degré supérieur ou égal a 1 alors d’aprés le théoréme de D’Alembert P
admet au moins une racine dans C. Notons « une racines de P.
Comme P appartient & ker(®) on sait que P(X + 2) — P(X) = 0 donc
P(a+2)=P(a) =0.
Ainsi « + 2 est une racine de P. Par récurrence on peut alors montrer que pour
tout k € N, o + 2k est une racine de P.
P admet alors une infinité de racines, ce qui est absurde car le seul polynome

admettant une infinité de racines est le polynéme nul qui n’est pas de degré

supérieur ou égal a 1.

3.

b) D’aprés la question précédente aucun polynome de degré supérieur ou égal & 1 ne
peut appartenir a ker(®). Donc ker(®) C Co[X].
Réciproquement, soit P un polynome de Cy[X].
constant : P(X) = c.
Donc ®(P) = P(X +2) —
En conclusion, ker(®) =

P est donc un polynéme

P(X) =
Co[X].
D’apreés le théoréme du rang dim(Im(®P))

—c¢=0. Ainsi P € ker(®).

= dim(C, [X]) —dim(Cy[X]) =n+1—-1=n.

De plus, pour tout P € C,[X], on peut écrire P = Zaka avec a;, € C.

k=0
On en déduit que :
n n—1
®(P) = ar(X +2)F Zakxk an(X +2)" —ap X"+ an((X +2)F — X¥)
k=0 k=0
n—1
<n-1

On remarque que deg <Zak((X +2)F — Xk)> <

k=0
n n—1
n L
X" —a, X" = 2VX
oS50
Donc deg(a, (X +2)" —apX") <n-—1.

Par conséquent deg(®(P)) < n — 1 et donc Im(®) C C,,_1[X].
En conclusion, Im(®) C C,—1[X] et dim(Im(®)) =
Im(®) = C,,—1[X].

De plus a, (X +2)" —a, X" =

dim(C,,—1[X]) donc

CORRECTION DE L’EXERCICE 15 :

1.

2.

On commence par trouver 1 comme racine évidente puis on factorise :

23 —22% —x4+2=(x—1)(2% -2 —2)

Donc les racines sont a =1, 8 = —1 et v = 2.
a) — Montrons que S est un sous-espace vectoriel de espace vectoriel de référence
RN,

S est bien un sous-ensemble de RY.

La suite nulle vérifie bien la relation de récurrence donnée donc la suite nulle
appartient a S et donc S n’est pas vide.

Soit u et v deux suites appartenant a S et A un réel.

La suite u + Av vérifie alors, pour tout n € N :

(U + AV)pt3 = Unt3 + AUnys
= 2Upt2 + Unt1 — 2Up + A(20n42 + Ung1 — 20p)
=2(u 4+ M)pt2 + (U + AN0)pt1 — 2(u + Av)y
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Doncu+XvesS

En conclusion, S est bien un sous-espace vectoriel de RY et donc S est un
espace vectoriel.

On remarque que :

2x 1"P2 1"t 2 x 1" =1 =171,

Donc (a™)nen € S.
De plus
2x (=1)" P2 4 (=) —2x (—D)"=2x (1) = (=1)" =2 x (=1)"
=—(-1)" = (="

Donc (8" )nen € S.
Et enfin

2 x ont2 pontl g scon —ont3 4 9 on 9 x 9" = "3,

Donc (7" )nen € S.

Pour finir, montrons que la famille ((@")nen, (8™ )nen, (7" )nen) est libre.

Soient a, b et ¢ trois réels tels que :
VneN, aa”+b8"+cy" =0

En appliquant cela pour n =0, n = 1 et n = 2, on obtient que a, b et ¢ sont
obligés de vérifier :

a+b+c=0
a—b+2c=0 ©a=b=c=0.
a+b+4c=0

Donc la famille ((a™)nen, (8" )nen, (Y )nen) est libre.

Montrons que f est une application linéaire.
Soient u et v deux éléments de S et A un réel.

£+ X0) = (a4 Mo, (a4 M) (a4 M)
= (’U,() + Avg, U1 + vy, ug + /\’1}2)

= f(u) +Af(v)

Donc f est une application linéaire.

— Pour tout (,y,z) € R la donnée de :

ug =T
’U,lzy
Ug = 2

Vn € Nuy43 = 2up42 + Unt1 — 2uy

défini bien une suite de S.
Donc tout élément de R? admet un antécédent dans S et donc f est surjective.

— Déterminons le noyau de f.
On cherche donc a résoudre f(u) = (0,0,0), c’est-a-dire que 'on cherche les
suites de S dont les trois premier termes sont nuls.
On suppose que u € S et (ug,u1,uz) = (0,0,0).
11 suffit alors de montrer par récurrence que pour tout n € N, u,, = 0. (Je
vous laisse le faire!!).
Donc f(u) = (0,0,0) = u = 0. Ainsi ker(f) = {0} et donc f est injective.
En conclusion f est un isomorphisme de S dans R3.
¢) D’aprés la question précédente et d’aprés notre cours, on peut affirmer que
dim(S) = dim(R?) = 3 (car S et R? sont isomorphes).
Ainsi, la famille (" )nen, (8" )nen, (7" )nen) est une famille libre de S qui contient
3 vecteurs donc c’est une base de S.

3. D’aprés la question précédente, comme w € S, on sait qu’il existe a, b et ¢ trois réels
tels que :

YneN, w,=aa"+b8" + cy".

A Tl’aide des valeurs de wg, wy et wo, on trouve que :

1 1 2
Vn € N, n=————(—1)" 4+ =2".
n w 5 6( 4+ 3
CORRECTION DE L’EXERCICE 16 :
1. import numpy
def powmat(A,m):
if m==0:
return numpy.eye (numpy.shape (4) [0])
else:

return numpy.dot (A,powmat (A,m-1))

2. a) M(a) est une matrice symétrique réelle donc diagonalisable.
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1 01
b) rg(M(a)) =rg |0 a 0| Lg<« L3— Ly.
0 0 O
Donc M (a) est de rang 2 si a # 0, et de rang 1 si a = 0.
¢) Sia=0:ker(fo) = Veet(7 — k, 7).
. - =
Sia#0:ker(f,) =Vect(i — k).
T+ 2= [ur
d) fa(t) = pii &  ay = py
r+y=puz
La deuxiéme ligne nous donne (a — )y = 0 et donc a = p ou y = 0.
1 0 1—A
e) rg(M(a) = A3)=1rg [0 a—A 0 .sp(M(a)) ={0,a,2}.
0 0  =A2-X
1 0 1
Sia=0:EyM©O)=Vect [ [ 0|, [1]], BE20(0)) = Vet [ |0
-1 0 1
1 1 0
Sia=2: Ey(M(2)) = Vect 0 , Ea(M(2)) = Vect 0,1
-1 1 0
1
Sia#0eta#2: E(M(a))= Vect 0 , Ea(M(a)) = Vect
-1
0
E.(M(a)) = Vect 1
0

0
a
0
3. M(a)® = 4M(a).
4. On remarque que M(a)* = 4M (a)?,

On peut aussi montrer directement par
on=— 1 0 on=— 1

M(a)" = 0 (=2)" 0
2717 1 0 2717 1

récurrence

donc on peut montrer par récurrence que pour
p € N*, M(a)* =477 M(a)? et pour p € N, M(a)**! = 4P M (a).

que

CORRECTION DE L’EXERCICE 17 :

1. a) Comme F est de dimension finie, Im(f + g), Im(f) et Im(g) sont bien de dimen-
sions finies, donc on peut parler des rangs de f + g, f et g.

On considére y € Im(f + g). Alors il existe x € E tel que :

y=(+9)@) = f(x) +g(x).
Or f(x) € Im(f) et g(x) € Im(g).
Donc f(z) =Mfi+...+Xpxp et g(x) = pay1 + ... + Lys.

+ kY-
7fp7917" 79/@)

Onadoncy= Mz +...+ Azp+uy1 + ...
Cela montre que Im(f + g) C Vect(fy,...

b) D’aprés la question précédente, on a :
rg(f+g) <

En conclusion, on a bien rg(f +¢g) <r

dim(Vect(f1, ... k) < card(fi,..., fpo01,--.,98) = p+k.

g(f) +1g(g).

¢) En appliquant, ce résultat de fagon « astucieuse » on peut écrire :

rg(f) =rg(f +9+(—9))

On en déduit que rg(f) —rg(g) < rg(f + g).
De méme rg(g) = 1g(f + 9 — f) < rg(f + g) + 18(f) et donc —rg(f +g) <
rg(f) —re(g)-

Ainsi, on a montré que |rg(f) —rg(g)| <

7fpagla"'

<rg(f +g) +rg(—g) =reg(f +9) +18(9)

rg(f +9)-

2. a) Soit y € Im(g). 1l existe alors x € F tel que y = g(z).
On a donc f(y) = f(g(z)) =0 car f og = 0. Cela signifie que y € ker(f).
On a donc montré que Im(g) C ker(f).

dim(FE).

Donc d’apreés la question 1. b) dim(E) < rg(f) + rg(g

b) Comme f + g est bijectif on sait que rg(f 4+ g) =

)
D’aprés la question précédente, on a aussi rg(g) < dim(ker(f)). Or d’aprés le
théoréme du rang, dim(ker(f)) = dim(E) — rg(f).

Donc rg(g) < dim(E) —rg(f) = rg(g) +rg(f) < dim(E).
En conclusion dim(E) = rg(f) + rg(g).

CORRECTION DE L’EXERCICE 18 :
1. Soit @ € ker(f). On a alors :

go f(U) =g(f()) =g(0)=0

Donc U € ker(go f).
En conclusion ker(f) C ker(g o f).
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2. e Sens direct :

Supposons que ker(g o f) = ker(f). Soit @ € Im(f) Nker(g).

On sait alors que g(@) = 0 et il existe @ € E tel que @ = f(d).

Or on remarque que ) = go f(@) = 0. Donc @ € ker(go f) = ker(f).
Ainsi f(@) =0 et donc ¥ = 0.

On a bien Im(f) Nker(g) = {0}.

e Réciproque :

Supposons que Im(f) Nker(g) = {0}.

On sait déja que ker(f) C ker(g o f).

Soit @ € ker(g o f). On a donc g(f()) =0, et donc f() € Im(f) Nker(g)
Ainsi, f() =0 et donc U € ker(f).

En conclusion ker(f) = ker(g o f).

. Soit @ € Im(go f).

Alors il existe @ € E tel que @ = go f(d) =g (f()).

Donc @ € Im(g).

Ainsi Im(g o f) C Im(g).

. ® Sens direct :

Supposons que Im(g o f) = Im(g).

Soit U € E. On cherche & écrire % sous la forme f(?)—l—z> avec @ € F et T € ker(g).
Analyse : Supposons que cette décomposition existe.

On aurait alors g(u) = go f(@) et = f(a).

Synthese :  Comme g(@) € Im(g) = Im(g o f), il existe @
o(7) = go /().

On choisit donc ce @ et on remarque que @ = f(a) + o — f(@).
On a bien f(@) € Im(f) et @ — f(@) € ker(g).

(car g(T — £(@)) = 9(7) — g(/(@)) = 0)

Ainsi F = Im(f) + ker(g)

e Réciproque :

On suppose que E = Im(f) + ker(g).

On sait déja que Im(g o f) C Im(g).

Soit € Tm(g).

Alors il existe @ € E tel que @ = g(@).

Comme @ € E, on peut écrire @ = f( b )+ ¢ avec ¢ € ker(g).

Done @ = g(£(1)).
Ainsi Im(g) C Im(g o f) et donc Im(g) = Im(g o f).

€ E tel que

2. a) On cherche tous les réels ag, a1, ---

CORRECTION DE L’EXERCICE 19 :
1. Si f est bijective alors pour tout entier k, f* est bijective. Mais comme il existe k tel
que f¥ =0 ceci est absurde.
Donc f n’est pas bijective.
, ap—1 tels que apxo + a1 f(zo) + -+ +
ap—1 7" (z0) = 0.

En appliquant fP~1 a cette égalité on obtient :
fP~Haowo + ar f(x0) + -+ + ap—1 /P~ (20)) = 0
=ao 7" (w0) + ar fP(wo) + -+ ap 1 fPP 2 (w0) = 0
éaofpil(xo) =0=ay=0

Donc  apzo + aif(ze) + -+ + ap,lfpfl(xo) = 0 &
ag = 0
{ ay f(zo) + -+ ap_1 /7 (o) =0
On applique alors fP~2 a I'égalité et on obtient a; = 0.
On répéte l'opération et on a donc ag =a; =--- =ap—1 =0.
La famille (zo, f(20), -, fP~ (x0)) est donc libre.
b) Toute famille libre de E posséde nécessairement moins de n vecteurs. Or
(zo, f(20), -+, fF (o)) est une famille libre de p vecteurs.

Donc p < n.

CORRECTION DE L’EXERCICE 20 :
1. La famille (f(u1),...
donc dim(Im(f)) > n.
2. On cherche tous les réels aq, ..., a, tels que ajuy + ...+ anu, = 0.
En appliquant f, grace a sa linéarité, on obtient a1 f(u1) + ... + anf(un) = 0.
Or, on sait que la famille (f(u1),..., f(uy)) est libre.

, f(uy)) est une famille libre de Im(f) qui contient n vecteurs

Donc ay f(u1) + ...+ anf(up) =0=a1 =...=a, =0.
La famille (uq,...,u,) est donc libre.
3. — Comme fof =0,siueIm(f) alors u = f(v) et donc f(u) = f(f(v)) =0,

c’est-a-dire u € ker(f).
Ainsi, Im(f) C ker(f).
— D’apres le point précédent, dim(Im(f)) < dim(ker(f)). Et donc, en utilisant le
théoréme du rang, on obtient 2 dim(Im(f)) < 2n, c’est-a-dire dim(Im(f)) < n.
Or, dans la question 1., on a montré que dim(Im(f)) > n.
Donc on a dim(Im(f)) = n et, d’aprés le théoréme du rang, dim(ker(f)) = n.
En conclusion, Im(f) C ker(f) et dim(Im(f)) = dim(ker(f)), donc Im(f) = ker(f).
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