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I Généralités sur les séries

1 Définitions

Définition 1
Soit (un)neny une suite réelle. On appelle série de terme général wu,, et on note Zun, la suite
(Sn)Nen définie par

N
VN € N, SN:u0+u1+...+uN:Zun.
n=0

Le réel Sy s’appelle la somme partielle d’indice IN de la série Z Uy, .

Notation :
Lorsque la suite u n’est pas définie pour tout n € N mais juste pour n > ng, la série de terme général
N
U, se note Z u, et ses sommes partielles sont Sy = Z u, (et donc n’existent que pour N > nyg).
nzng n=ng

Exemples 1 :

il N(N +1)
— Pour la série Z n, la somme partielle d’indice N est : Sy = ZO n = —

n—

N
1 1
— Pour la série E —, la somme partielle d’indice N est : Sy = g —. On ne peut pas simplifier plus
n n
n=>1 n=1
cette expression.

Définition 2

Soit (uy,)nen une suite réelle et E u, la série de terme général u,,.

N
On dit que la série Z u, est convergente si, et seulement si, la suite (Sy)yey (00 Sy = Zun)
n=0
admet une limite finie quand N — +o0, .
+o0
Cette limite s’appelle la somme de la série Z u, et on la note Z Up, -
n=0

Lorsque la suite (Sy) yey @admet une limite infinie ou n’admet pas de limite, on dit que la série Z Uy,

est divergente.

Remarques :

+oo
— Pour la série E Up, en cas de convergence, la somme se note g Uy, .-

nzngo n=ng
— Lorsqu’on cherche a savoir si une série donnée est convergente ou divergente, on dit que I’on détermine

la nature de la série.

+oo
— Attention a ne pas confondre la série E u, (qui est une suite) et la somme de la série E u, (qui
n=0
est un nombre réel).
+o0
Pour formuler les choses encore différemment E Uy, = (SN)Nen et E u, = lim Sy.
N—4o00
n=0

Cours BCPST?2 Page 2 Séries réelles



Conseils méthodologiques :

Cette définition nous donne une premiére méthode pour répondre a la question « g u, est-elle conver-

gente? » ou « quelle est la nature de la série Zun ? » (il existe d’autres méthodes pour répondre a

ces questions).
N
1. Pour N € N quelconque, on calcule Sy = Z Up, .
n=0

2. Ensuite on calcule lim Sy.
N—+4o00

3. Et enfin on conclut.

Exemple 2 :

Quelle est la nature de la série Z(2n +1)7
— Calculons tout d’abord les sommes partielles de cette série :

N(N +1
VN €N, SN—ZQn—i-l—QZn—i-Zl—Q +)+N+1:(N+1)2

— Cherchons maintenant la limite de la suite (Sx)nen. On a :

lim Sy = lim (N +1)* =+

N—+o00 N—+o00
— En conclusion la série Z(Qn + 1) est divergente.

Ezxemple 3 :

1
Montrer que la série Z on est convergente et calculer sa somme.
n=>2
— Calculons tout d’abord les sommes partielles de cette série :

VN > ZQn Z()n 1%:%@_(%)]“)

2

1
— Cherchons maintenant la limite de la suite (Sy)ys2. Comme —1 < 3 < l,ona:

1 N\ 1
I — lim - [1- (= — =
im Sy = lim 3 ( <2) ) 2

— En conclusion la série E — est convergente et g — =
n>2

1
5
Ezxzemple 4 :

) 1
Etudions la nature de la série 27
- “n(n —1)

— Calculons les somme partielle d’indice N pour tout N > 2 :
N 11
Sy = nz:; m = ; (n "~ 5) astuce a retenir

JCORCEIS

+1 1+11_11
N—-2 N-1 N-1 N) =~ N

somme téléscopique
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1

— Déterminons maintenant la limite de la suite (Sy)ns2 : lim S, = lim 1—— =1
N—+4o00 N—+4o00 N
1 =X 1
— En conclusion, la série ——— est convergente et —=1.
Z n(n—1) & ;n(n -1)

2 Terme général d’une série convergente

Pour toute la suite de ce chapitre (u,),en désigne une suite réelle et Zun la série de terme général
Up.-

Théoréme 1
SI la série Z u, est convergente ALORS lim u, =0.

n—-+o0o

Démonstration :

Il suffit ici de remarquer que pour tout n > 1 :
Up = Sn — Snfl.

Comme on a supposé que la série Z u, est convergente, on sait que lim S, =/¢ ¢ R.

n—-+o0o
Donc lim S, —S,.1=¢—/(=0.
n—-4o00o

On a donc bien montré que lim w, = 0.
n—-+00
O
Remarques :
— ATTENTION la réciproque a ce théoréme est en général fausse!!!! Nous verrons un contre exemple

dans la partie suivante.
— La contraposée de ce théoréeme sera trés utile en exercice. La voici ci-dessous.

Corollaire 1

Si lim u, # 0 alors la série g u, est divergente. On dit alors que la série est grossiérement
n——+00

divergente.

Conseils méthodologiques :
Ce corollaire donne une méthode pour montrer qu’une série est divergente : il suffit de montrer que
lim w, # 0.

n—-+o0o

Ezxemples 5 :

— La série E e" est grossiérement divergente car lim e" = +4o00.
n—-+0o0o

— La série Z cos(n) est grossiérement divergente car (cos(n)),eny n’admet pas de limite.

Par contre, si lilf u, = 0, on ne peut absolument RIEN dire sur la nature de la série sans faire plus
n—-+00

de calculs!
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3 Premiéres séries de référence

a Série géométrique et ses dérivées

Définition 3
Soit ¢ € R. La série Z q" s’appelle la série géométrique de raison gq.

Théoréme 2 : Sommes partielles des séries géométriques
Soient N et p deux entiers naturels tels que p < N, et soit ¢ € R.

N
—Siq:l,Zq”:N—erl.
n=p

N
1 — gN—p+l1 1 — nombre de termes
T SiQ#lazqnquXqi:premier terme X 9
n=p

1—gq 1—g¢q

Remarque :
La démonstration du cas g # 1 se fait par récurrence sur N.

Théoréme 3 : Nature des séries géométriques
La série E q" est convergente si, et seulement si, |g| < 1.

Théoréme 4 : Somme des séries géométriques
Si |¢q| < 1 alors, pour tout p € N :

_q'

+oo

1
E q" = q¢° x = premier terme X
o 1—¢q 1

Remarque :
La démonstration de ces deux théoréemes est immeédiate en utilisant la valeur des sommes partielles et
en faisant tendre N vers +oo.

Théoréme 5 : Séries « dérivées » de la série géométrique

— La série E ng" ! s’appelle la série dérivée premiére de la série géométrique de raison

g. Cette série est convergente si, et seulement si, |¢| < 1 et, en cas de convergence, on a

— La série E n(n — 1)¢" 2 s’appelle la série dérivée seconde de la série géométrique de
raison g. Cette série est convergente si, et seulement si, |¢| < 1 et, en cas de convergence, on a

+00 9
nin —1)¢" 2= ——.
nz:% (1—-g¢)?
Remarque :
400 400 +o0 +o00 400
Lorsque |¢| < 1, an”_l = an”_l et Zn(n —1)g"? = Zn(n —1)g"? = Zn(n —1)g" 2
n=0 n=1 n=0 n=1 n=2
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Démonstration :
— On peut commencer par remarquer que, pour |g| > 1, les deux séries an et Zn(n — 1)q"_2 sont
grossiérement divergentes.

— On pose, pour tout N € Net x €] — 1;1], Zx

1— xNJrl
On sait que, pour tout z €] — 1; 1], fy(z) = 1
—x

La fonction fx est de classe € sur | — 1; 1] et, pour tout = €] — 1;1] :

Z —~(N+ D2V —2)+ (1 -2V N2V (N + 12NV +1
nz"" " = =
(1—x)? (1—x)?
N
—N(N —1)zV Tt 4+ 2(N + 1)(N — 1)z — N(N + 1)2V=1 + 2
N@) = nn-1)a""?= ( Akt A (i(_ 2 ) SR
n=2
Pour |z| < 1, on sait que lim 2™ =0 et d’aprés les croissances comparées lim  N%z™ = 0.
N—+o0 N—+o0
N N
On en déduit donc que, pour |z| < 1, <Z nw"_1> et <Z n(n — 1)x"_2> ont des limites finies,
n= N>1 n=2 N>2

1 2
(-2 " A-ap

En conclusion, les séries ann_l et Zn(n — 1)(]"_2 sont convergentes si, et seulement si, |¢| < 1 et en cas
de convergence :

respectivement égales &

—+00

1 o 2
S = g R b=

n=0

Ezemple 6 : A savoir refaire vite et parfaitement

Déterminer la nature de la série E nq" et, en cas de convergence, déterminer la valeur de sa somme.

Si |g| > 1, la série an" est grossicrement divergente.
N N
Soit maintenant |¢| < 1. Pour tout N € N, an =q X an

n=0 n= 0
On reconnait un somme de partielle de la série dérivée premiére de la série géométrique de raison q.

Comme |g| < 1, on sait que cette suite de sommes partielles admet une limite finie.

1
Done, pour |g| < 1, la série E nq" est convergente et E ng" = q x W
—q
n=0

Exemple 7 : A savoir refaire vite et parfaitement

Déterminer la nature de la série g n?q" et, en cas de convergence, déterminer la valeur de sa somme.

Si|q| > 1, la série Zrﬂq" est grossiérement divergente.
Si |q| < 1, pour tout N eN:

N N
Zn Z n(n—1)+ qzznn—l ”2+anq
n=0 n=0 n=0

On reconnait ici des sommes partielles des séries dérivées premiére et seconde de la série géométrique
de raison ¢. Comme |g| < 1, on sait que ces suites sommes partielles ont des limites finies.

Dong, pour |¢| < 1, Zn2q" est convergente et :

= 2n __ 2 2 q _Q<1+Q)
2 = A T g
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b  Série harmonique

Théoréme 6

1
La série harmonique E — est divergente.
n>1

Démonstration :

On peut remarquer que lim — = 0, mais cette information ne nous indique rien sur la nature de la

n—+oco N
crie 3 1
serie —.
n

n=1
1 1
On peut par contre remarquer que : V¢t € [n;n + 1], n < —.
n+1 1 n+1 1 n 1
On a donc / —dt < / — dt, ce qui donne In(n + 1) — In(n) < —.
n N n
En sommant pour n allant de 1 & N (N € N¥), on obtient :
N N 4 N 4
1 1) —1 < < In(N +1) —
D (In(n 1) =In(m) <3 7 (N +1) <30
alg| 1
Et lim In(NV+1) = btient | — = ‘est-a-di la séri —
comme N~1>I<rkloo n(N + 1) = 400, on obtient que AIEOO; - +00, c’est-a-dire que la série ; -
est divergente.
O
Remarques :
N
— Dans cet exemple, il était impossible de calculer la somme partielle Z —. Pour trouver tout de méme
n
n=1

sa limite nous nous sommes servi d’une inégalité. Nous verrons dans la partie II encore d’autres

méthodes pour déterminer la nature d’une série. Il existe d’autres facons de démontrer ce résultat.
— La série harmonique illustre un fait qui peut paraitre surprenant : on ajoute a chaque étape un terme

de plus en plus petit et pourtant la somme continue a croitre jusqu’a +oc.

Cette somme croit extrémement lentement : méme en ajoutant 10" termes la somme ne dépasse

toujours pas 100...

Ezxemple 8 : Un grand classique

Montrer que Z ? In(n).

n%Jroo
k_

n
1
On a déja vu que, pour tout n > 1, Z % > In(n +1).
k=1
Pour obtenir une majoration de cette somme, on utilise une idée semblable & la démonstration précé-
dente.

1 1
Soit k € N\ {0,1}. Pour tout ¢ € [k — 1; k], % < 7
"1 b1 1
Par croissance de l'intégrale, on a donc Z dt < / n dt, ce qui donne % < In(k) —In(k —1).
k-1

k-1 -
En sommant pour k allant de 2 a n (n € N\ {0,1}), on obtient :

n

Z - < (k) —In(k — 1)) = In(n).
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En ajoutant 1 & chaque membre de l'inégalité on a donc

k=1
En résumé
1
Vn e N\{0,1},In(n+1) < —<In(n)+1
\ {0, 1}, In(n + 1) ; < In(n)
1
In(n+1) = k 1
& Vn e N\ {0,1}, < <1
" V0. 1) In(n) In(n) * In(n)
On remarque alors que :
1
lim 1 =1
nte 1 In(n)
1 1 In (141
lim M: lim 1+M:1
n—+00 ln(n) n—-+o00 ln(n)

o
D drement de limites, li 21 ) | cestoadire : S L 1
OHC, pal" encadremen e 1111 eS, niriloo W =1, Cc est-a-dire . ; E n*;\;oo n(n)

4 Propriétés

Propriété 1

La nature d’une série ne dépend pas des premiers termes, autrement dit :

pour tout ng € N, Zun et Zun sont de méme nature.

nzno

Remarque :

Attention les séries g U, et g u, sont de méme nature mais n’ont pas la méme somme en cas de

n=ngo

convergence ! !'!

Propriété 2 : Combinaison linéaire de séries convergentes

Soient (U )nsng €t (Un)nsn, deux suites réelles et A et p deux réels fixés.
Si les séries E Uy et E v, sont convergentes, alors la série E (Au, + pvy,) est convergente et on
n=ngo n=ngo n=>ngo
a:
+oo +00 +oo
g (Auy + pvy) = A g Uy + g Uy,
n=ng n=ngo n=ng
Démonstration :

Pour tout N > ng :

(1) Z()\unJr,uvn):)\ZunJr,qun,

n=ng n=ngo n=ngo

car on peut réordonner une somme finie.
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N N
De plus, les suites (Z un> et (Z vn> admettent des limites finies.
N2>=ng N2=ng

n=ngo n=no
N
Donc par opérations sur les limites, (Z (Auy, + ,uvn)> admet une limite finie, ce qui signifie que
n=no N}no
la série Z (Au, + pv,) est convergente et on a, par passage a la limites dans la relation (1) :
n=no

+oo +o0 +oo

Z()\un + py,) = )\Zun +qun.

n=ng n=ng n=ng

O

Exemple 9 :

On considére les suites u et v définies par :
Vn € N, u, = (=1)" et v, =(-1)"

Les suites u et v n’admettent pas de limites donc les séries Z Uy, et Z v, sont divergente.

On remarque alors que, pour tout entier n, u, + v, = 0. Donc la série E (u, + vy,) est convergente car
ses sommes partielles sont nulles.

Remarque :
— Il n’existe de pas de résultat donnant la nature d’une somme de deux séries divergentes.
— L’étude de la nature du produit de deux séries est hors-programme en BCPST.

I Théorémes de convergence pour les séries & termes positifs

1 Une propriété intermédiaire sur les séries a termes positifs

Propriété 3

Soit E u, une série & termes positifs.

Alors la suite (Sy)nen des sommes partielles est croissante.

Démonstration :

On a, pour tout n € N :
SN+1—SN:(U0+U1+...+UN+1)—(UO+U1+...+UN):UN+1

Or on sait que la suite u est une suite & termes positifs. Donc uy.1 = 0, ce qui nous permet donc de
montrer que la suite (Sy)nen est croissante.

Théoréme 7
Soit E u, une série & termes positifs.

La série E u,, est convergente si, et seulement si, la suite (Sy)ven de ses sommes partielles est majorée.
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Démonstration :

=
Si la série Z u,, est convergente, alors par définition, la suite (Sy)yen est convergente. Or toue suite
convergente est bornée donc la suite (Sy)nen est bornée.

P—

On suppose maintenant que la suite (Sy)nen est bornée. On souhaite montrer que la série Z Uy, est
convergente ce qui signifie que la suite (Sy)yen est convergente.

D’aprés la propriété précédente, la suite (Sy)yen est croissante.

Ainsi la suite (Sn)nen est croissante et majorée, donc la suite (Sy)yen est convergente et ainsi la série

E u, est convergente.

Conseils méthodologiques :
Voici donc deux nouvelles méthodes pour étudier la nature d’une série a termes positifs :

— S’il existe M € R tel que pour tout N € N, Sy < M alors la série Zun est convergente.

— Si, pour tout N > ng, on a Sy > wy avec NlirJrrl wy = +oo alors la série g u, est divergente.
—+00

Méme si nous allons peu utiliser ces méthodes dans la feuille de TD, il faut bien retenir ce théoréme
car dans un probléme il peut étre utile!

2 Les théoréemes de convergence

a Les théorémes de comparaison

Théoréme 8 : Majoration de u,, par le terme général d’une série convergente

Vn = ng, 0 < u, <o,
alors Z u, est convergente.

E v, est convergente

Démonstration :

On sait que pour tout n > ng, on a 0 < u, < v,.
En sommant cette égalité pour n allant de ng & N (avec N > ng) on obtient :

N N
0< E Up < E Up
n=ng n=ng
N
La série E v, est & termes positifs, donc la suite E Up, est croissante.
n=no N2n0
N
De plus, on suppose que la série g v, est convergente donc la suite g Up, est convergente.
n=no N}no
N N +oo
La suite E Up, est donc majorée par sa limite, c’est-a-dire : VN > ny, E Uy < E Up,.
n=ng N>ng n=ng n=ng
A retenir : une suite croissante et convergente est majorée par sa limite.
N +oo N
On obtient alors, pour tout N > ny, g Uy < E v, et donc la suite E Uy, est majorée.
n=ng n=ngo n=no N>ng
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N
De plus, la série E u, est a termes positifs, donc la suite E Up est croissante.
n=ngo NZTZ()

A retenir : une suite croissante et divergente tend forcément vers +oo.
N

D’aprés le théoréme de la limite monotone, la suite E Uy, est convergente, c’est-a-dire que la
n=ngo N2n0

série E u, est convergente.

O
Théoréme 9 : Minoration de u,, par le terme général d’une série divergente
VYn>ng, 0< v, <u
Si — T T T alors Z u, est divergente.
Z v, est divergente
Démonstration :
N N
De méme que dans la démonstration précédente, on a : 0 < Z Uy < Z u,. Et on sait ici que la série
n=ng n=ng
Z v, est divergente.
N
Comme Z v, est une série a termes positifs, on a nécessairement lim Z v, = +00.
N—+o0
n=ng
N
Par comparaison de limites, on a donc lim Z Uy, = +00.
N—+o0
n=ng
La série Z u, est donc divergente.
O
Remarques :
Il existe deux cas ol on ne peut rien dire :
— Si0<u, <v, et Z v, est divergente, on ne peut rien dire sur Zun
— Siwu, =2v, =20et Z v, est convergente, on ne peut rien dire sur Z U,
Théoréme 10 : Une nouvelle série de référence
" 1
La série Z — est convergente.
n>1
Remarques :
1 . .
— Les séries du type Z — s’appellent les séries de Riemann. HORS PROGRAMME
n=1 n
“+o0o
— On sait calculer la valeur de la somme ((a) = Z — (fonction zéta de Riemann) pour tout «
n
n=1

entier pair supérieur ou égal & deux mais on ne sait pas calculer cette somme pour les autres valeurs
de a € C. C’est encore un probléme ouvert en mathématiques (en particulier les mathématiciens
s’intéressent beaucoup aux valeurs de « qui annulent la fonction ().
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Démonstration :

1

L’astuce consiste ici a remarquer que pour tout n € N\ {0,1}, n > n — 1 et donc — < Py P
n? = n(n—

1
Nous avons vu dans 'exemple 4 que la série Z
n

est convergente.
Sn(n—1)

D’apreés le théoréme de majoration pour les séries a termes positifs on en déduit que la série E — est
n

n=1
convergente.

b Le théoréme des équivalents

Théoréme 11 : Critére des équivalents pour les séries a termes positifs
Si{ Vn = ng, u, =2 0et v, >0

alors E U, et g v,, sont de méme nature.
Up ~ Uy

Démonstration :

On suppose dans toute la démonstration que les séries Z Uy €t Zvn sont & termes positifs et que u, ~ vy,.

— Mise en place prehmlnalre . comme Uy ~ Up, 0N salt que lim — = 1, ce qui 81gn1ﬁe que, pour tout € > 0,
n—+00 Uy

il existe n. > ng, tel que :

v
Yn > ng, l—l'ga¢>1—a<—"<1+s
Un n
On choisit dans cette démonstration de prendre € = ~ et on note ny/, 'entier tel que :
1 Up, 3
Vn = ny 9, §<a<§-
3
Vn zmny, 0< o, < Sup
— Supposons que Zun est convergente : On a alors 2

§un est convergente.

D’aprés le théoréme de majoration pour les séries & termes positifs, on peut alors affirmer que E vy, est

convergente.
1
Vn > n1/2; 0< =uy, <y
— Supposons que Zun est divergente : On a alors 2

JUn est divergente.

D’aprés le théoréme de minoration pour les séries & termes positifs, on peut alors affirmer que E vy, est
divergente.
En conclusion, g Uy, €t E v, sont de méme nature.
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¢ Des exemples

Conseils méthodologiques :
On dispose donc de trois nouvelles méthodes pour étudier la nature de la série & termes positifs

S u

— Majorer u,, par le terme général d’une série convergente (alors E u,, converge).

— Minorer u,, par le terme général d’une série divergente (alors Zun diverge).
— Déterminer un équivalent simple de u,, (que 'on appelle v,,) et déterminer la nature de la série
S0
Lorsqu’on utilise une des deux premiéres méthodes on dit que I'on utilise « les critéres de comparaison

sur les séries a termes positifs » et lorsqu’on utilise la troisiéme méthode on dit que 'on utilise « le
critére des équivalents pour les séries a termes positifs ».

Exemple 10 :

In(n)

Montrons que la série E

n=2

est divergente.

In(n) > In(2)

On peut remarquer ici que, pour tout n > 2, =0

n n

1 In(2
On sait que la série Z— est divergente. Donc (par multiplication par un scalaire) la série ZL est
n22n n>2 n
divergente.
o - : R . . In(n) .
Ainsi, d’aprés le théoréme de comparaison sur les séries & termes positifs, la série Z— est diver-
n=2
gente.
Exemple 11 :
et/ —1
On souhaite déterminer la nature de la série Z — .
n>1 n
et/n —1
On commence par remarquer que Vn € N*, ——— > 0.
" in _
; x 1/n € 1 1
De plus on sait que € —1 ~ x,donce’™ -1 ~ —.Onadonc —— ~ —.
z—0 n—+4o0o N n n—+00 1
. . 1
Or on sait que la série Z — est convergente.
n
n>1

el/n — 1
Donc, d’aprés le théoréme des équivalents sur les séries & termes positifs, la série E <7> est

n
n=>1

convergente.

IIT  Séries de référence : complément et utilisation

1 Série exponentielle

Nous avons déja vu 5 séries de référence : la série harmonique, la série géométrique et ses deux dérivées
. 1
et la série E —-
n

n=1
Voici une derniére série de référence.
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Théoréme 12

) x
Pour tout réel z, la série E — est convergente et on a :
n!

+o0 "

Vr € R, Zg:ex.

n=0

Cette série est appelée série exponentielle.

Remarque :
Théoréme admis en BCPST.

2 Ezremple d’utilisation des séries de référence

Exemple 12 :

n“+(n+1 )
Montrons que la série Z#e est convergente et déterminons la valeur de sa somme.

n!
n>=1

Pour tout N > 1,

in%(nﬂ)! o

WE
3|3

9 N
1)!
672n+§ (n+ )ef2n
n=1

2 al &l nl
N n N
—2n 2n
I
Y
— (n—1)! —
N-1 N+1
1
_ J"" o—20+1) +Zle (i—1)
=

onaposéj=n-—1 dans la premiére somme et ¢ = n + 1 dans la seconde

N— 1 N4l |
= ‘ e 20+ Z o206+ 4 ZZ (6,2)1—1
=07 i=2
D Rt S CU Sl
j=1 (J a 1)' j:()j! =2
N-24 N-14 N+1 1
- - —2\J _
=Y et () Y ()
p=0 Jj=0 =2
onaposep=j—1
N—-2 1 N—1 1 ‘ N1 '
) T e S )
o " =07’ i=2

. L, . 1 _o\n . L, . . _9
Or on sait que la série E = (e ) est convergente car on reconnait la série exponentielle pour x = e “.
n

Donc dans Pexpression ci-dessus, les deux premiéres sommes partielles admettent des limites finies
lorsque N — +o00.

L. _o\n—1 5 L . L, e . a L. , ,
De plus, la série E n (e ) est convergente car c’est une série dérivée premiére de la série géomé-

trique de raison e 2 et |e ?| < 1. Donc la troisiéme somme a aussi une limite finie.
n+ 1)
On en déduit que la série E #e " est convergente.
n!
n>1
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De plus

+oon+(n+1 —2n _ o4 o) 2+001 IR~ PP
; n! Zpl Jgo]‘ (e )+;Z(e )

IV~ Convergence absolue

Définition 4
On dit que la série g u, est absolument convergente si, et seulement si, la série g |u,| est
convergente.

Théoréme 13 : Convergence absolue = convergence
SI la série Z u, est absolument convergente ALORS la série Z U, est convergente.

Exemple 13 :

. 1 L
Comme on a vu que la série g —— est convergente, on peut affirmer que la série g est abso-
n=2 n=2

lument convergente et donc convergente.

(=n"
on

Remarque :

La réciproque de ce théoréme est en générale fausse : si la série E u, est convergente on ne peut pas

donner, sans calculs, la nature de la série Z [t

Les séries convergentes mais pas absolument convergentes s’appellent des séries semi-convergentes.
Leur étude systématique est hors-programme, toutefois nous verrons en exercice comment en étudier
certaines.

Conseils méthodologiques :
Voici donc encore une technique montrer qu’une série est convergente :

Si g |un| est convergente alors g u, est convergente.

Exemple 14 :

cos(n)
. n?+1
Attention, ici la série n’est pas a termes positifs.

On a donc 'idée de tenter de montrer que cette série est absolument convergente.
cos(n)
n?+1

Montrons que la série g est convergente.

1 2 2
< —,car |cos(n)| < letn“+1>n
n

On remarque que, pour tout n € N*, 0 < >

Or on sait que la série E — est convergente.

n>1
cos(n)
n?+1

Donc, d’aprés le théoreme de comparaison sur les séries & termes positifs, la série E

convergente.

Ainsi la série E

cos(n)
1 est absolument convergente et elle est donc convergente.

n? +
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Propriété 4
Si la série E u, est absolument convergente alors la valeur de la somme de cette série ne dépend pas
de l'ordre d’énumération de ses termes.

Remarque :
Cette propriété sera surtout utilisée dans les chapitres de probabilités discrétes.
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