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I Généralités sur les séries

1 Définitions

Définition 1

Soit (un)n∈N une suite réelle. On appelle série de terme général un, et on note
∑

un, la suite
(SN)N∈N définie par

∀N ∈ N, SN = u0 + u1 + . . .+ uN =
N
∑

n=0

un.

Le réel SN s’appelle la somme partielle d’indice N de la série
∑

un.

Notation :
Lorsque la suite u n’est pas définie pour tout n ∈ N mais juste pour n > n0, la série de terme général

un se note
∑

n>n0

un et ses sommes partielles sont SN =

N
∑

n=n0

un (et donc n’existent que pour N > n0).

Exemples 1 :

— Pour la série
∑

n, la somme partielle d’indice N est : SN =

N
∑

n=0

n =
N(N + 1)

2
.

— Pour la série
∑

n>1

1

n
, la somme partielle d’indice N est : SN =

N
∑

n=1

1

n
. On ne peut pas simplifier plus

cette expression.

Définition 2

Soit (un)n∈N une suite réelle et
∑

un la série de terme général un.

On dit que la série
∑

un est convergente si, et seulement si, la suite (SN)N∈N
(où SN =

N
∑

n=0

un)

admet une limite finie quand N → +∞, .

Cette limite s’appelle la somme de la série
∑

un et on la note
+∞
∑

n=0

un.

Lorsque la suite (SN)N∈N
admet une limite infinie ou n’admet pas de limite, on dit que la série

∑

un

est divergente.

Remarques :

— Pour la série
∑

n>n0

un, en cas de convergence, la somme se note
+∞
∑

n=n0

un.

— Lorsqu’on cherche à savoir si une série donnée est convergente ou divergente, on dit que l’on détermine
la nature de la série.

— Attention à ne pas confondre la série
∑

un (qui est une suite) et la somme de la série
+∞
∑

n=0

un (qui

est un nombre réel).

Pour formuler les choses encore différemment
∑

un = (SN)N∈N et
+∞
∑

n=0

un = lim
N→+∞

SN .
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Conseils méthodologiques :

Cette définition nous donne une première méthode pour répondre à la question «
∑

un est-elle conver-

gente ? » ou « quelle est la nature de la série
∑

un ? »(il existe d’autres méthodes pour répondre à
ces questions).

1. Pour N ∈ N quelconque, on calcule SN =
N
∑

n=0

un.

2. Ensuite on calcule lim
N→+∞

SN .

3. Et enfin on conclut.

Exemple 2 :

Quelle est la nature de la série
∑

(2n+ 1) ?
— Calculons tout d’abord les sommes partielles de cette série :

∀N ∈ N, SN =
N
∑

n=0

(2n+ 1) = 2
N
∑

n=0

n+
N
∑

n=0

1 = 2
N(N + 1)

2
+N + 1 = (N + 1)2

— Cherchons maintenant la limite de la suite (SN)N∈N. On a :

lim
N→+∞

SN = lim
N→+∞

(N + 1)2 = +∞

— En conclusion la série
∑

(2n+ 1) est divergente.

Exemple 3 :

Montrer que la série
∑

n>2

1

2n
est convergente et calculer sa somme.

— Calculons tout d’abord les sommes partielles de cette série :

∀N > 2, SN =

N
∑

n=2

1

2n
=

N
∑

n=2

(

1

2

)n

=
1

4

1−
(

1
2

)N−1

1− 1
2

=
1

2

(

1−

(

1

2

)N−1
)

— Cherchons maintenant la limite de la suite (SN)N>2. Comme −1 <
1

2
< 1, on a :

lim
N→+∞

SN = lim
N→+∞

1

2

(

1−

(

1

2

)N−1
)

=
1

2

— En conclusion la série
∑

n>2

1

2n
est convergente et

+∞
∑

n=2

1

2n
=

1

2
.

Exemple 4 :

Étudions la nature de la série
∑

n>2

1

n(n− 1)
.

— Calculons les somme partielle d’indice N pour tout N > 2 :

SN =

N
∑

n=2

1

n(n− 1)
=

N
∑

n=2

(

1

n− 1
−

1

n

)

astuce à retenir

=

(

1−
1

2

)

+

(

1

2
−

1

3

)

+ . . .

+

(

1

N − 2
−

1

N − 1

)

+

(

1

N − 1
−

1

N

)

= 1−
1

N

somme téléscopique
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— Déterminons maintenant la limite de la suite (SN)N>2 : lim
N→+∞

Sn = lim
N→+∞

1−
1

N
= 1

— En conclusion, la série
∑ 1

n(n− 1)
est convergente et

+∞
∑

n=2

1

n(n− 1)
= 1.

2 Terme général d’une série convergente

Pour toute la suite de ce chapitre (un)n∈N désigne une suite réelle et
∑

un la série de terme général
un.

Théorème 1

SI la série
∑

un est convergente ALORS lim
n→+∞

un = 0.

Démonstration :

Il suffit ici de remarquer que pour tout n > 1 :

un = Sn − Sn−1.

Comme on a supposé que la série
∑

un est convergente, on sait que lim
n→+∞

Sn = ℓ ∈ R.

Donc lim
n→+∞

Sn − Sn−1 = ℓ− ℓ = 0.

On a donc bien montré que lim
n→+∞

un = 0.

✷

Remarques :
— ATTENTION la réciproque à ce théorème est en général fausse ! ! ! ! Nous verrons un contre exemple

dans la partie suivante.
— La contraposée de ce théorème sera très utile en exercice. La voici ci-dessous.

Corollaire 1

Si lim
n→+∞

un 6= 0 alors la série
∑

un est divergente. On dit alors que la série est grossièrement

divergente.

Conseils méthodologiques :
Ce corollaire donne une méthode pour montrer qu’une série est divergente : il suffit de montrer que
lim

n→+∞

un 6= 0.

Exemples 5 :

— La série
∑

en est grossièrement divergente car lim
n→+∞

en = +∞.

— La série
∑

cos(n) est grossièrement divergente car (cos(n))n∈N n’admet pas de limite.

Par contre, si lim
n→+∞

un = 0, on ne peut absolument RIEN dire sur la nature de la série sans faire plus

de calculs !
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3 Premières séries de référence

a Série géométrique et ses dérivées

Définition 3

Soit q ∈ R. La série
∑

qn s’appelle la série géométrique de raison q.

Théorème 2 : Sommes partielles des séries géométriques

Soient N et p deux entiers naturels tels que p < N , et soit q ∈ R.

— Si q = 1,
N
∑

n=p

qn = N − p+ 1.

— Si q 6= 1,
N
∑

n=p

qn = qp ×
1− qN−p+1

1− q
= premier terme ×

1− qnombre de termes

1− q
.

Remarque :
La démonstration du cas q 6= 1 se fait par récurrence sur N .

Théorème 3 : Nature des séries géométriques

La série
∑

qn est convergente si, et seulement si, |q| < 1.

Théorème 4 : Somme des séries géométriques

Si |q| < 1 alors, pour tout p ∈ N :

+∞
∑

n=p

qn = qp ×
1

1− q
= premier terme ×

1

1− q
.

Remarque :
La démonstration de ces deux théorèmes est immédiate en utilisant la valeur des sommes partielles et

en faisant tendre N vers +∞.

Théorème 5 : Séries « dérivées » de la série géométrique

— La série
∑

nqn−1 s’appelle la série dérivée première de la série géométrique de raison

q. Cette série est convergente si, et seulement si, |q| < 1 et, en cas de convergence, on a

+∞
∑

n=0

nqn−1 =
1

(1− q)2
.

— La série
∑

n(n − 1)qn−2 s’appelle la série dérivée seconde de la série géométrique de

raison q. Cette série est convergente si, et seulement si, |q| < 1 et, en cas de convergence, on a

+∞
∑

n=0

n(n− 1)qn−2 =
2

(1− q)3
.

Remarque :

Lorsque |q| < 1,
+∞
∑

n=0

nqn−1 =

+∞
∑

n=1

nqn−1 et
+∞
∑

n=0

n(n− 1)qn−2 =

+∞
∑

n=1

n(n− 1)qn−2 =

+∞
∑

n=2

n(n− 1)qn−2.
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Démonstration :

— On peut commencer par remarquer que, pour |q| > 1, les deux séries
∑

nqn−1 et
∑

n(n − 1)qn−2 sont

grossièrement divergentes.

— On pose, pour tout N ∈ N et x ∈]− 1; 1[, fN (x) =

N
∑

n=0

xn.

On sait que, pour tout x ∈]− 1; 1[, fN(x) =
1− xN+1

1− x
.

La fonction fN est de classe C
∞ sur ]− 1; 1[ et, pour tout x ∈]− 1; 1[ :

f ′

N (x) =

N
∑

n=1

nxn−1 =
−(N + 1)xN (1− x) + (1− xN+1)

(1− x)2
=

NxN+1 − (N + 1)xN + 1

(1− x)2

f ′′

N (x) =

N
∑

n=2

n(n− 1)xn−2 =
−N(N − 1)xN+1 + 2(N + 1)(N − 1)xN −N(N + 1)xN−1 + 2

(1− x)3

Pour |x| < 1, on sait que lim
N→+∞

xN = 0 et d’après les croissances comparées lim
N→+∞

NαxN = 0.

On en déduit donc que, pour |x| < 1,

(

N
∑

n=1

nxn−1

)

N>1

et

(

N
∑

n=2

n(n− 1)xn−2

)

N>2

ont des limites finies,

respectivement égales à
1

(1− x)2
et

2

(1− x)3
.

En conclusion, les séries
∑

nqn−1 et
∑

n(n − 1)qn−2 sont convergentes si, et seulement si, |q| < 1 et en cas

de convergence :
+∞
∑

n=0

nqn−1 =
1

(1− q)2
,

+∞
∑

n=0

n(n− 1)qn−2 =
2

(1− q)3
.

✷

Exemple 6 : À savoir refaire vite et parfaitement

Déterminer la nature de la série
∑

nqn et, en cas de convergence, déterminer la valeur de sa somme.

Si |q| > 1, la série
∑

nqn est grossièrement divergente.

Soit maintenant |q| < 1. Pour tout N ∈ N,
N
∑

n=0

nqn = q ×

N
∑

n=0

nqn−1.

On reconnait un somme de partielle de la série dérivée première de la série géométrique de raison q.
Comme |q| < 1, on sait que cette suite de sommes partielles admet une limite finie.

Donc, pour |q| < 1, la série
∑

nqn est convergente et
+∞
∑

n=0

nqn = q ×
1

(1− q)2
.

Exemple 7 : À savoir refaire vite et parfaitement

Déterminer la nature de la série
∑

n2qn et, en cas de convergence, déterminer la valeur de sa somme.

Si |q| > 1, la série
∑

n2qn est grossièrement divergente.
Si |q| < 1, pour tout N ∈ N :

N
∑

n=0

n2qn =

N
∑

n=0

(n(n− 1) + n)qn = q2
N
∑

n=0

n(n− 1)qn−2 + q

N
∑

n=0

nqn−1.

On reconnait ici des sommes partielles des séries dérivées première et seconde de la série géométrique
de raison q. Comme |q| < 1, on sait que ces suites sommes partielles ont des limites finies.

Donc, pour |q| < 1,
∑

n2qn est convergente et :

+∞
∑

n=0

n2qn = q2
2

(1− q)3
+

q

(1− q)2
=

q(1 + q)

(1− q)3
.
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b Série harmonique

Théorème 6

La série harmonique
∑

n>1

1

n
est divergente.

Démonstration :

On peut remarquer que lim
n→+∞

1

n
= 0, mais cette information ne nous indique rien sur la nature de la

série
∑

n>1

1

n
.

On peut par contre remarquer que : ∀t ∈ [n;n+ 1],
1

t
6

1

n
.

On a donc
∫ n+1

n

1

t
dt 6

∫ n+1

n

1

n
dt, ce qui donne ln(n+ 1)− ln(n) 6

1

n
.

En sommant pour n allant de 1 à N (N ∈ N
∗), on obtient :

N
∑

n=1

(ln(n+ 1)− ln(n)) 6

N
∑

n=1

1

n
⇔ ln(N + 1) 6

N
∑

n=1

1

n
.

Et comme lim
N→+∞

ln(N + 1) = +∞, on obtient que lim
N→+∞

N
∑

n=1

1

n
= +∞, c’est-à-dire que la série

∑

n>1

1

n

est divergente.

✷

Remarques :

— Dans cet exemple, il était impossible de calculer la somme partielle
N
∑

n=1

1

n
. Pour trouver tout de même

sa limite nous nous sommes servi d’une inégalité. Nous verrons dans la partie II encore d’autres
méthodes pour déterminer la nature d’une série. Il existe d’autres façons de démontrer ce résultat.

— La série harmonique illustre un fait qui peut paraitre surprenant : on ajoute à chaque étape un terme
de plus en plus petit et pourtant la somme continue à croitre jusqu’à +∞.
Cette somme croit extrêmement lentement : même en ajoutant 1043 termes la somme ne dépasse
toujours pas 100...

Exemple 8 : Un grand classique

Montrer que
n
∑

k=1

1

k
∼

n→+∞

ln(n).

On a déjà vu que, pour tout n > 1,
n
∑

k=1

1

k
> ln(n + 1).

Pour obtenir une majoration de cette somme, on utilise une idée semblable à la démonstration précé-
dente.

Soit k ∈ N \ {0, 1}. Pour tout t ∈ [k − 1; k],
1

k
6

1

t
.

Par croissance de l’intégrale, on a donc
∫ k

k−1

1

k
dt 6

∫ k

k−1

1

t
dt, ce qui donne

1

k
6 ln(k)− ln(k − 1).

En sommant pour k allant de 2 à n (n ∈ N \ {0, 1}), on obtient :

n
∑

k=2

1

k
6

n
∑

k=2

(ln(k)− ln(k − 1)) = ln(n).
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En ajoutant 1 à chaque membre de l’inégalité on a donc

n
∑

k=1

1

k
6 ln(n) + 1.

En résumé

∀n ∈ N \ {0, 1}, ln(n + 1) 6
n
∑

k=1

1

k
6 ln(n) + 1

⇔ ∀n ∈ N \ {0, 1},
ln(n+ 1)

ln(n)
6

n
∑

k=1

1

k

ln(n)
6 1 +

1

ln(n)

On remarque alors que :

lim
n→+∞

1 +
1

ln(n)
= 1

lim
n→+∞

ln(n+ 1)

ln(n)
= lim

n→+∞

1 +
ln
(

1 + 1
n

)

ln(n)
= 1

Donc, par encadrement de limites, lim
n→+∞

∑n
k=1

1

k
ln(n)

= 1, c’est-à-dire :
n
∑

k=1

1

k
∼

n→+∞

ln(n).

4 Propriétés

Propriété 1

La nature d’une série ne dépend pas des premiers termes, autrement dit :

pour tout n0 ∈ N,
∑

n>n0

un et
∑

un sont de même nature.

Remarque :

Attention les séries
∑

n>n0

un et
∑

un sont de même nature mais n’ont pas la même somme en cas de

convergence ! ! !

Propriété 2 : Combinaison linéaire de séries convergentes

Soient (un)n>n0
et (vn)n>n0

deux suites réelles et λ et µ deux réels fixés.
Si les séries

∑

n>n0

un et
∑

n>n0

vn sont convergentes, alors la série
∑

n>n0

(λun + µvn) est convergente et on

a :
+∞
∑

n=n0

(λun + µvn) = λ

+∞
∑

n=n0

un + µ

+∞
∑

n=n0

vn.

Démonstration :

Pour tout N > n0 :

(1)

N
∑

n=n0

(λun + µvn) = λ

N
∑

n=n0

un + µ

N
∑

n=n0

vn,

car on peut réordonner une somme finie.
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De plus, les suites

(

N
∑

n=n0

un

)

N>n0

et

(

N
∑

n=n0

vn

)

N>n0

admettent des limites finies.

Donc par opérations sur les limites,

(

N
∑

n=n0

(λun + µvn)

)

N>n0

admet une limite finie, ce qui signifie que

la série
∑

n>n0

(λun + µvn) est convergente et on a, par passage à la limites dans la relation (1) :

+∞
∑

n=n0

(λun + µvn) = λ

+∞
∑

n=n0

un + µ

+∞
∑

n=n0

vn.

✷

Exemple 9 :
On considère les suites u et v définies par :

∀n ∈ N, un = (−1)n et vn = (−1)n+1.

Les suites u et v n’admettent pas de limites donc les séries
∑

un et
∑

vn sont divergente.

On remarque alors que, pour tout entier n, un + vn = 0. Donc la série
∑

(un + vn) est convergente car
ses sommes partielles sont nulles.

Remarque :
— Il n’existe de pas de résultat donnant la nature d’une somme de deux séries divergentes.
— L’étude de la nature du produit de deux séries est hors-programme en BCPST.

II Théorèmes de convergence pour les séries à termes positifs

1 Une propriété intermédiaire sur les séries à termes positifs

Propriété 3

Soit
∑

un une série à termes positifs.
Alors la suite (SN)N∈N des sommes partielles est croissante.

Démonstration :

On a, pour tout n ∈ N :

SN+1 − SN = (u0 + u1 + . . .+ uN+1)− (u0 + u1 + . . .+ uN) = uN+1

Or on sait que la suite u est une suite à termes positifs. Donc uN+1 > 0, ce qui nous permet donc de
montrer que la suite (SN)N∈N est croissante.

✷

Théorème 7

Soit
∑

un une série à termes positifs.

La série
∑

un est convergente si, et seulement si, la suite (SN)N∈N de ses sommes partielles est majorée.
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Démonstration :

=⇒

Si la série
∑

un est convergente, alors par définition, la suite (SN)N∈N est convergente. Or toue suite
convergente est bornée donc la suite (SN)N∈N est bornée.

⇐=

On suppose maintenant que la suite (SN)N∈N est bornée. On souhaite montrer que la série
∑

un est
convergente ce qui signifie que la suite (SN)N∈N est convergente.

D’après la propriété précédente, la suite (SN)N∈N est croissante.
Ainsi la suite (SN )N∈N est croissante et majorée, donc la suite (SN)N∈N est convergente et ainsi la série

∑

un est convergente.

✷

Conseils méthodologiques :
Voici donc deux nouvelles méthodes pour étudier la nature d’une série à termes positifs :

— S’il existe M ∈ R tel que pour tout N ∈ N, SN 6 M alors la série
∑

un est convergente.

— Si, pour tout N > n0, on a SN > wN avec lim
N→+∞

wN = +∞ alors la série
∑

un est divergente.

Même si nous allons peu utiliser ces méthodes dans la feuille de TD, il faut bien retenir ce théorème
car dans un problème il peut être utile !

2 Les théorèmes de convergence

a Les théorèmes de comparaison

Théorème 8 : Majoration de un par le terme général d’une série convergente

Si

{

∀n > n0, 0 6 un 6 vn
∑

vn est convergente
alors

∑

un est convergente.

Démonstration :

On sait que pour tout n > n0, on a 0 6 un 6 vn.
En sommant cette égalité pour n allant de n0 à N (avec N > n0) on obtient :

0 6

N
∑

n=n0

un 6

N
∑

n=n0

vn

La série
∑

vn est à termes positifs, donc la suite

(

N
∑

n=n0

vn

)

N>n0

est croissante.

De plus, on suppose que la série
∑

vn est convergente donc la suite

(

N
∑

n=n0

vn

)

N>n0

est convergente.

La suite

(

N
∑

n=n0

vn

)

N>n0

est donc majorée par sa limite, c’est-à-dire : ∀N > n0,

N
∑

n=n0

vn 6

+∞
∑

n=n0

vn.

À retenir : une suite croissante et convergente est majorée par sa limite.

On obtient alors, pour tout N > n0,
N
∑

n=n0

un 6

+∞
∑

n=n0

vn et donc la suite

(

N
∑

n=n0

un

)

N>n0

est majorée.
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De plus, la série
∑

un est à termes positifs, donc la suite

(

N
∑

n=n0

un

)

N>n0

est croissante.

À retenir : une suite croissante et divergente tend forcément vers +∞.

D’après le théorème de la limite monotone, la suite

(

N
∑

n=n0

un

)

N>n0

est convergente, c’est-à-dire que la

série
∑

un est convergente.

✷

Théorème 9 : Minoration de un par le terme général d’une série divergente

Si

{

∀n > n0, 0 6 vn 6 un
∑

vn est divergente
alors

∑

un est divergente.

Démonstration :

De même que dans la démonstration précédente, on a : 0 6

N
∑

n=n0

vn 6

N
∑

n=n0

un. Et on sait ici que la série

∑

vn est divergente.

Comme
∑

vn est une série à termes positifs, on a nécessairement lim
N→+∞

N
∑

n=n0

vn = +∞.

Par comparaison de limites, on a donc lim
N→+∞

N
∑

n=n0

un = +∞.

La série
∑

un est donc divergente.

✷

Remarques :
Il existe deux cas où on ne peut rien dire :

— Si 0 6 un 6 vn et
∑

vn est divergente, on ne peut rien dire sur
∑

un.

— Si un > vn > 0 et
∑

vn est convergente, on ne peut rien dire sur
∑

un.

Théorème 10 : Une nouvelle série de référence

La série
∑

n>1

1

n2
est convergente.

Remarques :

— Les séries du type
∑

n>1

1

nα
s’appellent les séries de Riemann. HORS PROGRAMME

— On sait calculer la valeur de la somme ζ(α) =

+∞
∑

n=1

1

nα
(fonction zêta de Riemann) pour tout α

entier pair supérieur ou égal à deux mais on ne sait pas calculer cette somme pour les autres valeurs
de α ∈ C. C’est encore un problème ouvert en mathématiques (en particulier les mathématiciens
s’intéressent beaucoup aux valeurs de α qui annulent la fonction ζ).
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Démonstration :

L’astuce consiste ici à remarquer que pour tout n ∈ N \ {0, 1}, n > n− 1 et donc
1

n2
6

1

n(n− 1)
.

Nous avons vu dans l’exemple 4 que la série
∑

n>2

1

n(n− 1)
est convergente.

D’après le théorème de majoration pour les séries à termes positifs on en déduit que la série
∑

n>1

1

n2
est

convergente.

✷

b Le théorème des équivalents

Théorème 11 : Critère des équivalents pour les séries à termes positifs

Si

{

∀n > n0, un > 0 et vn > 0
un ∼ vn

alors
∑

un et
∑

vn sont de même nature.

Démonstration :

On suppose dans toute la démonstration que les séries
∑

un et
∑

vn sont à termes positifs et que un ∼ vn.

— Mise en place préliminaire : comme un ∼ vn, on sait que lim
n→+∞

vn

un
= 1, ce qui signifie que, pour tout ε > 0,

il existe nε > n0, tel que :

∀n > nε,

∣

∣

∣

∣

vn

un
− 1

∣

∣

∣

∣

6 ε ⇔ 1− ε 6
vn

un
6 1 + ε.

On choisit dans cette démonstration de prendre ε =
1

2
et on note n1/2 l’entier tel que :

∀n > n1/2,
1

2
6

vn

un
6

3

2
.

— Supposons que
∑

un est convergente : On a alors











∀n > n1/2, 0 6 vn 6
3

2
un

∑ 3

2
un est convergente.

D’après le théorème de majoration pour les séries à termes positifs, on peut alors affirmer que
∑

vn est

convergente.

— Supposons que
∑

un est divergente : On a alors











∀n > n1/2, 0 6
1

2
un 6 vn

∑ 1

2
un est divergente.

D’après le théorème de minoration pour les séries à termes positifs, on peut alors affirmer que
∑

vn est

divergente.

En conclusion,
∑

un et
∑

vn sont de même nature.

✷
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c Des exemples

Conseils méthodologiques :
On dispose donc de trois nouvelles méthodes pour étudier la nature de la série à termes positifs
∑

un :

— Majorer un par le terme général d’une série convergente (alors
∑

un converge).

— Minorer un par le terme général d’une série divergente (alors
∑

un diverge).
— Déterminer un équivalent simple de un (que l’on appelle vn) et déterminer la nature de la série
∑

vn.
Lorsqu’on utilise une des deux premières méthodes on dit que l’on utilise « les critères de comparaison
sur les séries à termes positifs » et lorsqu’on utilise la troisième méthode on dit que l’on utilise « le
critère des équivalents pour les séries à termes positifs ».

Exemple 10 :

Montrons que la série
∑

n>2

ln(n)

n
est divergente.

On peut remarquer ici que, pour tout n > 2,
ln(n)

n
>

ln(2)

n
> 0

On sait que la série
∑

n>2

1

n
est divergente. Donc (par multiplication par un scalaire) la série

∑

n>2

ln(2)

n
est

divergente.

Ainsi, d’après le théorème de comparaison sur les séries à termes positifs, la série
∑

n>2

ln(n)

n
est diver-

gente.

Exemple 11 :

On souhaite déterminer la nature de la série
∑

n>1

(

e1/n − 1

n

)

.

On commence par remarquer que ∀n ∈ N
∗,

e1/n − 1

n
> 0.

De plus on sait que ex − 1 ∼
x→0

x, donc e1/n − 1 ∼
n→+∞

1

n
. On a donc

e1/n − 1

n
∼

n→+∞

1

n2
.

Or on sait que la série
∑

n>1

1

n2
est convergente.

Donc, d’après le théorème des équivalents sur les séries à termes positifs, la série
∑

n>1

(

e1/n − 1

n

)

est

convergente.

III Séries de référence : complément et utilisation

1 Série exponentielle

Nous avons déjà vu 5 séries de référence : la série harmonique, la série géométrique et ses deux dérivées

et la série
∑

n>1

1

n2
.

Voici une dernière série de référence.
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Théorème 12

Pour tout réel x, la série
∑ xn

n!
est convergente et on a :

∀x ∈ R,

+∞
∑

n=0

xn

n!
= ex.

Cette série est appelée série exponentielle.

Remarque :
Théorème admis en BCPST.

2 Exemple d’utilisation des séries de référence

Exemple 12 :

Montrons que la série
∑

n>1

n2 + (n+ 1)!

n!
e−2n est convergente et déterminons la valeur de sa somme.

Pour tout N > 1,

N
∑

n=1

n2 + (n+ 1)!

n!
e−2n =

N
∑

n=1

n2

n!
e−2n +

N
∑

n=1

(n+ 1)!

n!
e−2n

=
N
∑

n=1

n

(n− 1)!
e−2n +

N
∑

n=1

(n+ 1)e−2n

=
N−1
∑

j=0

j + 1

j!
e−2(j+1) +

N+1
∑

i=2

ie−2(i−1)

on a posé j = n− 1 dans la première somme et i = n+ 1 dans la seconde

=

N−1
∑

j=0

j

j!
e−2(j+1) +

N−1
∑

j=0

1

j!
e−2(j+1) +

N+1
∑

i=2

i
(

e−2
)i−1

=
N−1
∑

j=1

1

(j − 1)!
e−2(j+1) + e−2

N−1
∑

j=0

1

j!

(

e−2
)j

+
N+1
∑

i=2

i
(

e−2
)i−1

=

N−2
∑

p=0

1

p!
e−2(p+2) + e−2

N−1
∑

j=0

1

j!

(

e−2
)j

+

N+1
∑

i=2

i
(

e−2
)i−1

on a posé p = j − 1

= e−4
N−2
∑

p=0

1

p!

(

e−2
)p

+ e−2
N−1
∑

j=0

1

j!

(

e−2
)j

+
N+1
∑

i=2

i
(

e−2
)i−1

Or on sait que la série
∑ 1

n!

(

e−2
)n

est convergente car on reconnait la série exponentielle pour x = e−2.

Donc dans l’expression ci-dessus, les deux premières sommes partielles admettent des limites finies
lorsque N → +∞.

De plus, la série
∑

n
(

e−2
)n−1

est convergente car c’est une série dérivée première de la série géomé-

trique de raison e−2 et |e−2| 6 1. Donc la troisième somme a aussi une limite finie.

On en déduit que la série
∑

n>1

n2 + (n+ 1)!

n!
e−2n est convergente.
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De plus

+∞
∑

n=1

n2 + (n+ 1)!

n!
e−2n = e−4

+∞
∑

p=0

1

p!

(

e−2
)p

+ e−2

+∞
∑

j=0

1

j!

(

e−2
)j

+

+∞
∑

i=2

i
(

e−2
)i−1

= e−4 × ee
−2

+ e−2 × ee
−2

+

(

1

(1− e−2)2
− 1

)

.

IV Convergence absolue

Définition 4

On dit que la série
∑

un est absolument convergente si, et seulement si, la série
∑

|un| est
convergente.

Théorème 13 : Convergence absolue ⇒ convergence

SI la série
∑

un est absolument convergente ALORS la série
∑

un est convergente.

Exemple 13 :

Comme on a vu que la série
∑

n>2

1

2n
est convergente, on peut affirmer que la série

∑

n>2

(−1)n

2n
est abso-

lument convergente et donc convergente.

Remarque :

La réciproque de ce théorème est en générale fausse : si la série
∑

un est convergente on ne peut pas

donner, sans calculs, la nature de la série
∑

|un|.
Les séries convergentes mais pas absolument convergentes s’appellent des séries semi-convergentes.

Leur étude systématique est hors-programme, toutefois nous verrons en exercice comment en étudier
certaines.

Conseils méthodologiques :
Voici donc encore une technique montrer qu’une série est convergente :

Si
∑

|un| est convergente alors
∑

un est convergente.

Exemple 14 :

Montrons que la série
∑ cos(n)

n2 + 1
est convergente.

Attention, ici la série n’est pas à termes positifs.
On a donc l’idée de tenter de montrer que cette série est absolument convergente.

On remarque que, pour tout n ∈ N
∗, 0 6

∣

∣

∣

∣

cos(n)

n2 + 1

∣

∣

∣

∣

6
1

n2
, car | cos(n)| 6 1 et n2 + 1 > n2.

Or on sait que la série
∑

n>1

1

n2
est convergente.

Donc, d’après le théorème de comparaison sur les séries à termes positifs, la série
∑

n>1

∣

∣

∣

∣

cos(n)

n2 + 1

∣

∣

∣

∣

est

convergente.

Ainsi la série
∑ cos(n)

n2 + 1
est absolument convergente et elle est donc convergente.
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Propriété 4

Si la série
∑

un est absolument convergente alors la valeur de la somme de cette série ne dépend pas
de l’ordre d’énumération de ses termes.

Remarque :
Cette propriété sera surtout utilisée dans les chapitres de probabilités discrètes.
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