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Dans tout ce chapitre les fonctions considérées sont définies sur une partie de R et à valeurs dans R.

I Rappels de sup sur les intégrales

1 Rappels sur les primitives

Définition 1
On appelle primitive de f sur I toute fonction F dérivable sur I telle que, pour tout x ∈ I,
F ′(x) = f(x).

Remarque :

De cette définition on peut directement déduire que si f admet une primitive alors F est continue. Il
n’est par contre pas indispensable que f soit continue.

Théorème 1
Soit f une fonction continue sur I. Alors f admet au moins une primitive sur I.

Remarque :

Le tableau des primitives usuelles est à connaitre par cœur.

Propriété 1
Soit F une primitive de f sur I. Alors l’ensemble des primitives de f sur I est l’ensemble des fonctions
de la forme F + k où k ∈ R.

Propriété 2
Soient x0 ∈ I et y0 ∈ R. Alors il existe une unique primitive F de f sur I telle que F (x0) = y0.

2 Définition de l’intégrale d’une fonction continue sur un segment

Définition 2
Soient f une fonction continue sur I, a et b deux éléments de I et F une primitive de f sur I.

On appelle intégrale de a à b de f et on note
∫ b

a

f(x) dx le réel :

∫ b

a

f(x) dx = F (b)− F (a).

Remarques :

— La valeur de F (b)− F (a) ne dépend pas de la primitive choisie.
— Les bornes d’une intégrales ne sont pas toujours écrites dans l’ordre croissant ! ! ! !

— Lors des calculs d’intégrale on note
∫ b

a

f(x) dx = [F (x)]ba = F (b)− F (a).

Propriété 3 : Interprétation géométrique
a et b désignent deux réels tels que a < b. Soit f : [a; b] → R une fonction continue sur le segment

[a; b]. Alors le réel
∫ b

a

f(x) dx est égal à l’aire algébrique, exprimée en unités d’aire, du domaine compris

entre la courbe représentative de f , l’axe des abscisses et les droites d’équation x = a et x = b.
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Pour toute la suite de cette partie, a et b sont deux réels appartenant à I.
Attention, sauf mention contraire, on ne suppose PAS a < b.

3 Propriétés de l’intégrale

Théorème 2 : Linéarité de l’intégrale
Soient f et g deux fonctions continues sur I et soient λ et µ deux réels. Alors

∫ b

a

(λf(t) + µg(t)) dt = λ

∫ b

a

f(t) dt + µ

∫ b

a

g(t) dt.

Théorème 3 : Positivité de l’intégrale

Si







f est continue sur I
a 6 b
f est positive sur [a; b]

, alors
∫ b

a

f(t) dt > 0.

Théorème 4 : Croissance de l’intégrale

Si







f et g sont continues sur I
a 6 b
∀t ∈ [a; b], f(t) 6 g(t)

, alors
∫ b

a

f(t) dt 6
∫ b

a

g(t) dt.

Théorème 5 : Stricte positivité de l’intégrale

Si







f est continue sur I
a < b
∀t ∈ [a; b], f(t) > 0
f n’est pas identiquement nulle

, alors
∫ b

a

f(t) dt > 0.

Corollaire 1

Si







f est continue sur I
a < b
∀t ∈ [a; b], f(t) > 0
∫ b

a

f(t) dt = 0

, alors ∀t ∈ [a; b], f(t) = 0.

Propriété 4 : Inégalité triangulaire

Si a < b et si f est une fonction continue sur I, alors :

∣
∣
∣
∣

∫ b

a

f(t) dt

∣
∣
∣
∣
6

∫ b

a

|f(t)| dt.

Théorème 6 : Relation de Chasles
Soit f une fonction continue sur I et a, b et c trois réels de cet intervalle. Alors :

∫ b

a

f(t) dt =
∫ c

a

f(t) dt+
∫ b

c

f(t) dt

Définition 3
On suppose que f est continue sur I.

On appelle valeur moyenne de f entre a et b le réel
1

b− a

∫ b

a

f(t) dt.
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Propriété 5
On suppose que a < b et que f est continue sur I. On note m = inf

[a;b]
f et M = sup

[a;b]

f . Alors :

m 6
1

b− a

∫ b

a

f(t) dt 6 M.

Théorème 7 : Théorème fondamental de l’analyse
Soit f : I → R une fonction continue sur un intervalle I, et soit a ∈ I.

Alors la fonction F : I → R définie par F (x) =

∫ x

a

f(t) dt est l’unique primitive de f sur I s’annulant

en a.

Corollaire 2

Si

{
f est continue sur I
a ∈ I

alors







F : x 7→
∫ x

a

f(t) dt est de classe C
1 sur I

∀x ∈ I, F ′(x) = f(x)
.

Corollaire 3
Soit f : I → R une fonction de classe C

p (p ∈ N) sur un intervalle I et F une primitive de f sur I.
Alors F est de classe C

p+1.

Conseils méthodologiques :

Pour étudier une fonction de la forme G : x 7→
∫ v(x)

u(x)

f(t) dt, on commence par donner un nom à une

primitive de f (par exemple F ) puis on exprime G en fonction de F :

G(x) = F (v(x))− F (u(x)).

Le théorème fondamental de l’analyse permet de donner la régularité de F lorsqu’on connait celle de
f (si f est de classe C

p alors F est de classe C
p+1) et en justifiant aussi la régularité des fonctions u et v

on obtient la classe de la fonction G.
De plus, la formule de dérivée d’une composée de fonctions permet de calculer la dérivée de la fonction

G.

4 Intégration par partie et changement de variable

Théorème 8 : Intégration par partie
Soient u et v deux fonctions de classe C

1 sur [a; b].

∫ b

a

u(t)v′(t) dt = [u(t)v(t)]ba −
∫ b

a

u′(t)v(t) dt.

Théorème 9 : Changement de variable
Soit f une fonction continue sur J et ϕ : I → J une fonction de classe C

1 sur I. Soient a, b ∈ I. Alors
on a : ∫ b

a

f(ϕ(t))ϕ′(t) dt =
∫ ϕ(b)

ϕ(a)

f(x) dx.

On dit que l’on pose x = ϕ(t).
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Conseils méthodologiques : On cherche à calculer
∫ b

a

f(x) dx.

— On pose x = ϕ(t) ou t = φ(x)
— On peut alors écrire dx = ϕ′(t) dt ou dt = φ′(x) dx
— On regarde entre quelles valeurs varie t.
— On remplace dans l’intégrale pour n’avoir plus que la variable t qui apparait.

Attention : penser à modifier les bornes : dans notre intégrale c’est x qui varie de a à b, un fois le
changement de variable effectué les bornes doivent représenter les nombres entre lesquels t varie.

5 Sommes de Riemann, théorème de la moyenne

Théorème 10 : Théorème de la moyenne - méthode des rectangles
Soit f une fonction continue sur [a; b]. Alors on a :

∫ b

a

f(t) dt = lim
n→+∞

b− a

n

n∑

k=1

f

(

a +
k(b− a)

n

)

= lim
n→+∞

b− a

n

n−1∑

k=0

f

(

a+
k(b− a)

n

)

.

Les deux sommes ci-dessus s’appellent des sommes de Riemann.

Remarque :

Dans la très grande majorité des exercices on utilise ce théorème sur l’intervalle [0; 1], ce qui donne,
lorsque f est continue sur [0; 1] :

∫ 1

0

f(t) dt = lim
n→+∞

1

n

n∑

k=1

f

(
k

n

)

= lim
n→+∞

1

n

n−1∑

k=0

f

(
k

n

)

.

II Extension de la notion d’intégrale

Le but de la suite de ce chapitre est de tenter de donner un sens à l’intégrale de a à b d’une fonction
continue sur ]a; b] ou [a; b[ ou encore sur ]a; b[, a et b pouvant être des réels ou égaux à +∞ ou −∞.

On rappelle que R = R ∪ {+∞;−∞}.
Définition 4
Soient a et b deux éléments de R.

On appelle intégrale généralisée ou intégrale impropre une intégrale du type
∫ b

a

f(t) dt, avec f

une fonction continue sur ]a; b] ou [a; b[ ou encore ]a; b[.

Lorsque f est continue sur [a; b], il n’y a aucun problème,
∫ b

a

f(t) dt existe.
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1 Sur un intervalle du type [a; b[ (a ∈ R et b ∈ R ∪ {+∞}) ou ]a; b] (a ∈ R ∪ {−∞} et b ∈ R)

Définition 5
Soit f une fonction continue sur l’intervalle [a; b[ avec a ∈ R et b ∈ R ∪ {+∞}.

On dit que l’intégrale

∫
b

a

f(t) dt est convergente si, et seulement si, la fonction x 7→
∫ x

a

f(t) dt

admet une limite finie lorsque x tend vers b ( avec x ∈ [a; b[). On pose alors :

∫ b

a

f(t) dt = lim
x→b−

∫ x

a

f(t) dt.

Dans le cas contraire on dit que l’intégrale est divergente.

On définit de la même façon lorsque f est continue sur ]a; b], et que x 7→
∫ b

x

f(t) dt admet une limite

finie lorsque x tend vers a,
∫ b

a

f(t) dt = lim
x→a+

∫ b

x

f(t) dt.

Vocabulaire :

Lorsqu’on détermine si une intégrale est convergente ou divergente, on dit que l’on détermine la nature
de l’intégrale.

Remarque :

Contrairement au chapitre sur les séries la même notation est utilisée pour désigner l’intégrale impropre
et sa valeur.

Exemple 1 :

Quelle est la nature de
∫ 1

0

t√
1− t2

dt ?

(i) La fonction f : t 7→ t√
1− t2

est continue sur [0; 1[, donc le problème se pose en 1.

(ii) Soit x ∈ [0; 1[. On a
∫ x

0

t√
1− t2

dt =
[

−
√
1− t2

]x

0
= −

√
1− x2 + 1.

(iii) De plus lim
x→1−

−
√
1− x2 + 1 = 1.

(iv) Donc l’intégrale
∫ 1

0

t√
1− t2

dt est convergente et
∫ 1

0

t√
1− t2

dt = 1.

Exemple 2 :

Quelle est la nature de l’intégrale
∫ 1

0

1

x
dx ?

(i) La fonction f : x 7→ 1

x
est continue sur ]0; 1], donc le problème se pose en 0.

(ii) Soit u ∈]0; 1]. On a
∫ 1

u

1

x
dx = [ln(|x|)]1u = 0− ln(u) = − ln(u).

(iii) De plus lim
u→0+

− ln u = +∞.

(iv) Donc l’intégrale
∫ 1

0

1

x
dx est divergente.
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Exemple 3 :

Quelle est la nature de l’intégrale
∫ +∞

1

1

x
dx ?

(i) La fonction f : x 7→ 1

x
est continue sur [1; +∞[. Le seul problème se trouve donc en +∞.

(ii) Soit A ∈ [1; +∞[. On a
∫ A

1

1

x
dx = [ln(|x|)]A1 = ln(A)− 0 = ln(A).

(iii) De plus lim
A→+∞

ln(A) = +∞.

(iv) Donc l’intégrale
∫ +∞

1

1

x
dx est divergente.

Exemple 4 :

Quelle est la nature de l’intégrale
∫ +∞

1

1√
t
e−

√
t dt ?

(i) La fonction f : t 7→ 1√
t
e−

√
t est continue sur [1; +∞[, donc le problème se pose en +∞.

(ii) Soit x ∈ [1; +∞[. On a
∫ x

1

1√
t
e−

√
t dt =

[

−2e−
√
t
]x

1
= −2e−

√
x + 2e−1.

(iii) De plus lim
x→+∞

−2e−
√
x + 2e−1 = 2e−1.

(iv) Donc l’intégrale
∫ +∞

1

1√
t
e−

√
t dt est convergente et

∫ +∞

1

1√
t
e−

√
t dt = 2e−1.

Théorème 11 : Le « faux problème »
On suppose que a et b sont deux RÉELS. Soit f une fonction continue sur [a; b[ telle que f admet une
limite finie en b (c’est-à-dire f est prolongeable par continuité en b).

Alors l’intégrale
∫ b

a

f(t) dt est convergente. On dit alors que l’intégrale
∫ b

a

f(t) dt est faussement

impropre.

On peut étendre ce théorème au cas des fonctions continues sur ]a; b] avec a et b réels et f prolongeable
pas continuité en a.

ATTENTION :
Ce théorème ne fonctionne que dans le cas où b est un RÉEL ! ! ! ! Si b = +∞ cela ne FONCTIONNE

PAS.

Exemple 5 :

Déterminer la nature de l’intégrale
∫ 1

0

ln(1 + x)

x
dx.

La fonction f : x 7→ ln(1 + x)

x
est continue sur ]0; 1]. Le problème semble donc se poser en 0. Mais on

remarque que lim
x→0

ln(1 + x)

x
= 1 donc on peut prolonger la fonction f par continuité en posant f(0) = 1.

Ainsi, il y a un faux problème en 0, l’intégrale
∫ 1

0

ln(1 + x)

x
dx est faussement impropre en 0, et donc

l’intégrale
∫ 1

0

ln(1 + x)

x
dx est convergente.
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2 Sur un intervalle du type ]a; b[ avec a, b ∈ R

Définition 6

Soient a, b ∈ R et f une fonction continue sur ]a; b[. On dit que l’intégrale

∫
b

a

f(t) dt est conver-

gente si, et seulement s’il existe c ∈]a; b[ tel que les intégrales
∫ c

a

f(t) dt et
∫ b

c

f(t) dt sont convergentes,

et, en cas de convergence, on pose :

∫ b

a

f(t) dt =
∫ c

a

f(t) dt+
∫ b

c

f(t) dt

Propriété 6

Soient a, b ∈ R et f une fonction continue sur ]a; b[. Les deux propositions suivantes sont équivalentes :

(i) Il existe c ∈]a; b[ tel que les intégrales
∫ c

a

f(t) dt et
∫ b

c

f(t) dt sont convergentes.

(ii) Pour tout c ∈]a; b[, les intégrales
∫ c

a

f(t) dt et
∫ b

c

f(t) dt sont convergentes.

Conseils méthodologiques :

Cette définition et cette propriété signifient que pour étudier la nature de l’intégrale
∫ b

a

f(t) dt lorsque

f est continue sur ]a; b[ il faut et il suffit d’étudier la nature des intégrale
∫ c

a

f(t) dt et
∫ b

c

f(t) dt et le

choix de la valeur de c n’a pas d’importance tant qu’il est dans l’intervalle ]a; b[.

Exemple 6 :

Déterminons la nature de
∫ +∞

0

1√
t
e−

√
t dt.

— La fonction f : t 7→ 1√
t
e−

√
t est continue sur ]0; +∞[, donc nous avons deux problèmes : en +∞ et

en 0.

Nous devons donc étudier la nature de
∫ 1

0

1√
t
e−

√
t dt et de

∫ +∞

1

1√
t
e−

√
t dt. (la valeur 1 que nous

introduisons est un choix lié à l’étude faite dans l’exemple précédent !)

— Nous avons vu dans l’exemple précédent que l’intégrale
∫ +∞

1

1√
t
e−

√
t dt est convergente.

— Étudions maintenant la nature de
∫ 1

0

1√
t
e−

√
t dt qui est impropre en 0.

(i) Soit x ∈]0; 1]. On a
∫ 1

x

1√
t
e−

√
t dt =

[

−2e−
√
t
]1

x
= −2e−1 + 2e−

√
x.

(ii) De plus lim
x→0

−2e−1 + 2e−
√
x = −2e−1 + 2.

(iii) Donc l’intégrale
∫ 1

0

1√
t
e−

√
t dt est convergente et

∫ 1

0

1√
t
e−

√
t dt = −2e−1 + 2.

— En conclusion
∫ +∞

0

1√
t
e−

√
t dt est convergente et

∫ +∞

0

1√
t
e−

√
t dt = −2e−1 + 2 + 2e−1 = 2 .

Cours BCPST2 Page 8 Intégrales : rappels et généralisation



Exemple 7 :

Déterminons la nature de l’intégrale
∫ +∞

0

1

x5
dx.

— La fonction f : x 7→ 1

x5
est continue sur ]0; +∞[, donc nous avons deux problèmes : en +∞ et en 0.

Nous devons donc étudier la nature de
∫ 1

0

1

x5
dx et de

∫ +∞

1

1

x5
dx. (la valeur 1 que nous introduisons

est un choix totalement arbitraire !)

— Étudions la nature de
∫ 1

0

1

x5
dx qui est impropre en 0.

(i) Soit A ∈]0; 1]. On a
∫ 1

A

1

x5
dx =

[−1

4x4

]1

A

= −1

4
+

1

4A4
.

(ii) De plus lim
A→0

−1

4
+

1

4A4
= +∞.

(iii) Donc l’intégrale
∫ 1

0

1

x5
dx est divergente.

— Il est inutile d’étudier la nature de
∫ +∞

1

1

x5
dx, on peut conclure tout de suite.

— En conclusion
∫ +∞

0

1

x5
dx est divergente.

3 Une propriété utile pour le prochain chapitre de probabilités...

Propriété 7

Soient a, b ∈ R, (α1, . . . , αn) ∈]a; b[n avec α1 < α2 < . . . < αn, et f une fonction continue sur
I \ {α1, . . . , αn} avec I = [a; b], ]a; b], [a; b[ ou ]a, b[ (on dit que f est continue sur I sauf en un

nombre fini de points).

L’intégrale
∫ b

a

f(t) dt est convergente si, et seulement si,
∫ α1

a

f(t) dt,
∫ α2

α1

f(t) dt, . . .,
∫ b

αn

f(t) dt sont

convergentes.

Exemple 8 :

On considère la fonction f définie sur R par f(x) =







0 si x 6
1

2
1

1 + 4x2
si x >

1

2

.

Montrons que l’intégrale
∫ +∞

−∞
f(x) dx est convergente et calculons sa valeur.

Sous réserve de convergence :

∫ +∞

−∞
f(x) dx =

∫ 1/2

−∞
f(x) dx+

∫ +∞

1/2

f(x) dx =

∫ 1/2

−∞
0 dx

︸ ︷︷ ︸

cvgte et =0

+

∫ +∞

1/2

1

1 + 4x2
dx.

Nous avons donc à étudier uniquement la nature de
∫ +∞

1/2

1

1 + 4x2
dx.

La fonction x 7→ 1

1 + 4x2
est continue sur

[
1

2
;+∞

[

. L’intégrale est donc impropre en +∞.
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Soit A ∈
]
1

2
;+∞

[

:

∫ A

1/2

1

1 + 4x2
dx =

[
1

2
arctan(2x)

]A

1/2

=
arctan(2A)

2
− π

8
.

De plus : lim
A→+∞

arctan(2A)

2
− π

8
=

π

4
− π

8
=

π

8
..

Donc
∫ +∞

1/2

f(x) dx est convergente et
∫ +∞

1/2

f(x) dx =
π

8
.

En conclusion,
∫ +∞

−∞
f(x) dx est convergente et

∫ +∞

−∞
f(x) dx = 0 +

π

8
=

π

8
.

III Propriétés des intégrales généralisées

1 Notation unifiée

Notations :

Dans toute la suite du chapitre on désignera par
— a un réel ou le symbole −∞ ;
— b un réel ou le symbole +∞ (dans le cas où a et b sont réels on suppose a < b) ;
— I un ensemble du type ]a; b], [a; b[, ]a; b[, ]a; b] \ {α1, . . . , αn}, [a; b[\{α1, . . . , αn}, ]a; b[\{α1, . . . , αn}

(avec (α1, . . . , αn) ∈]a; b[n) ;

—
∫

I

f ,
∫

I

f(t) dt,
∫ b

a

f ou encore
∫ b

a

f(t) dt l’intégrale de f sur I ou sa valeur.

2 Propriétés générales

Propriété 8
Soit f une fonction continue sur I.

Pour tout λ ∈ R
∗,
∫

I

f(t) dt et
∫

I

λf(t) dt sont de même nature.

Théorème 12 : Linéarité de l’intégrale
Soient f et g deux fonctions continues sur I.

Si les intégrales
∫

I

f(t) dt et
∫

I

g(t) dt sont convergentes alors, pour tout (λ, µ) ∈ R
2, l’intégrale

∫

I

(λf(t) + µg(t)) dt est convergente et

∫

I

(λf(t) + µg(t)) dt = λ

∫

I

f(t) dt+ µ

∫

I

g(t) dt.

Démonstration :

Pour la démonstration on suppose que f et g sont continues sur [a; b[ et on considère λ et µ deux réels.
Soit x ∈ [a; b[. Par linéarité de l’intégrale d’une fonction continue sur un segment on a :

∫ x

a

(λf(t) + µg(t)) dt = λ

∫ x

a

f(t) dt+ µ

∫ x

a

g(t) dt.

Comme on a supposé que les intégrales
∫ b

a

f(t) dt et
∫ b

a

g(t) dt sont convergentes, on sait que
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x 7→
∫ x

a

f(t) dt et x 7→
∫ x

a

g(t) dt admettent une limite finie lorsque x tend vers b.

Donc la fonction x 7→
∫ x

a

(λf(t) + µg(t)) dt admet une limite finie lorsque x tend vers b, ce qui signifie

que l’intégrale
∫ b

a

(λf(t) + µg(t)) dt est convergente. De plus :

∫ b

a

(λf(t) + µg(t)) dt = lim
x→b−

(

λ

∫ x

a

f(t) dt+ µ

∫ x

a

g(t) dt

)

= λ lim
x→b−

∫ x

a

f(t) dt + µ lim
x→b−

∫ x

a

g(t) dt

= λ

∫ b

a

f(t) dt+ µ

∫ b

a

g(t) dt.

✷

Théorème 13 : Positivité de l’intégrale

Si







f est continue sur I
a 6 b (dans le cas où a et b sont réels)
∀t ∈ I, f(t) > 0
∫

I

f(t) dt est convergente

, alors
∫

I

f(t) dt > 0.

Théorème 14 : Croissance de l’intégrale

Si







f et g sont continues sur I
a 6 b (dans le cas où a et b sont réels)
∀t ∈ I, f(t) 6 g(t)
∫

I

f(t) dt et
∫

I

g(t) dt sont convergentes

, alors
∫

I

f(t) dt 6
∫

I

g(t) dt.

Théorème 15 : Stricte positivité

Si







f est continue sur I
a < b (dans le cas où a et b sont réels)
∀t ∈ I, f(t) > 0
f n’est pas identiquement nulle surI
∫

I

f(t) dt est convergente

, alors
∫

I

f(t) dt > 0.

Théorème 16 : Relation de Chasles

Si f est continue sur [a; b[ alors pour tout c ∈ [a; b[,
∫ b

a

f(t) dt et
∫ b

c

f(t) dt sont de même nature et,

en cas de convergence :
∫ b

a

f(t) dt =
∫ c

a

f(t) dt+
∫ b

c

f(t) dt.
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Remarque :

La première partie de ce théorème signifie que lorsqu’on étudie la nature de l’intégrale
∫ b

a

f(t) dt qui

est impropre en b, la valeur que l’on met à la place de a n’a aucune importance (tant qu’on met une valeur
qui ne pose pas de problème !)

On peut évidemment adapter ce théorème pour une intégrale impropre en a et dans le cas où f est
continue sur I sauf en un nombre fini de points.

3 Intégration par parties et changement de variable

Théorème 17 : Théorème d’intégration par parties généralisé
Soient u et v deux fonctions de classe C

1 sur [a; b[ (a ∈ R et b ∈ R∪{+∞}). Si la fonction u×v admet

une limite finie en b alors les intégrales
∫ b

a

u(t)v′(t) dt et
∫ b

a

u′(t)v(t) dt sont de même nature et en

cas de convergence on a :

∫ b

a

u(t)v′(t) dt = lim
x→b−

(u(x)v(x))− u(a)v(a)−
∫ b

a

u′(t)v(t) dt.

Remarque : On adaptera le théorème aux intégrales impropres en a.

Conseils méthodologiques :

Pour appliquer le théorème d’intégration par parties à une intégrale impropre il faut vérifier que les
deux intégrales qui entrent en jeu sont convergentes et que x 7→ u(x)v(x) admet une limite finie en b
ou en a suivant où se trouve le problème. La rédaction peut être lourde avec toutes ces vérifications.
Il est parfois plus facile d’identifier où est le problème, par exemple intégrale impropre en b, d’appliquer
ensuite la formule d’intégration par partie sur [a; x] avec x ∈ [a; b[, et enfin de passer à la limite lorsque
x tend vers b.
À adapter si l’intégrale est impropre en a.

Exemple 9 :

On souhaite déterminer la nature et la valeur de l’intégrale
∫ +∞

1

ln(t)

t2
dt.

Méthode 1 : sans théorème d’IPP généralisé

(i) La fonction t 7→ ln(t)

t2
est continue sur [1; +∞[ donc l’intégrale est impropre en +∞.

(ii) Soit x ∈ [1; +∞[. On pose

u(t) = ln(t) u′(t) =
1

t

v′(t) =
1

t2
v(t) = −1

t

Les fonctions u et v sont de classe C
1 sur [1; x] donc, par intégration par parties :

∫ x

1

ln(t)

t2
dt =

[

− ln(t)

t

]x

1

+

∫ x

1

1

t2
dt = − ln(x)

x
− 1

x
+ 1

(iii) On a lim
x→+∞

− ln(x)

x
− 1

x
+1 = 1, donc l’intégrale

∫ +∞

1

ln(t)

t2
dt est convergente et

∫ +∞

1

ln(t)

t2
dt = 1.
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Méthode 2 : avec théorème d’IPP généralisé

(i) La fonction t 7→ ln(t)

t2
est continue sur [1; +∞[ donc l’intégrale est impropre en +∞.

(ii) On pose, pour tout t ∈ [1; +∞[ :

u(t) = ln(t) u′(t) =
1

t

v′(t) =
1

t2
v(t) = −1

t

* Les fonctions u et v sont de classe C
1 sur [1; +∞[.

* lim
x→+∞

− ln(t)

t
= 0, par croissances comparées.

*
∫ +∞

1

1

t2
dt est convergente car

∫ x

1

1

t2
dt = 1− 1

x
→ 1.

Donc, par théorème d’intégration par parties généralisé on peut affirmer que :

*
∫ +∞

1

ln(t)

t2
dt est convergente ;

*
∫ +∞

1

ln(t)

t2
dt = 0 +

ln(1)

1
+

∫ +∞

1

1

t2
dt = 1.

Théorème 18 : Théorème de changement de variable généralisé
Soit f une fonction continue sur ]a; b[ et soit ϕ une fonction strictement monotone et de classe C

1

sur ]α; β[ avec a = lim
u→α

ϕ(u) et b = lim
u→β

ϕ(u).

Alors les intégrales
∫ b

a

f(t) dt et
∫ β

α

f(ϕ(u))ϕ′(u) du sont de même nature et en cas de convergence on

a : ∫ b

a

f(t) dt =
∫ β

α

f(ϕ(u))ϕ′(u) du

ATTENTION : Il ne faut pas oublier de vérifier que le changement de variable est strictement
monotone.

Exemple 10 :

Calculons
∫ π

0

1

2 + cos(x)
dx à l’aide du changement de variable u = tan

(x

2

)

.

On donne la formule : ∀x ∈ [0; π[, cos(x) =
1− tan2(x/2)

1 + tan2(x/2)
.

— L’intégrale
∫ π

0

1

2 + cos(x)
dx est convergente car la fonction x 7→ 1

2 + cos(x)
est continue sur [0; π]

donc ce n’est pas une intégrale impropre.

— On souhaite donc poser u = tan
(x

2

)

. Mais ce changement de variable n’est possible que sur [0; π[.

Le théorème de changement de variable généralisé nous permet tout de même d’effectuer un tel
changement de variable.

La fonction x 7→ tan
(x

2

)

est strictement croissante et de classe C
1 sur [0; π[.

On a u qui varie de 0 à +∞ et du =
1

2

(

1 + tan2
(x

2

))

dx.

Grâce à la formule donnée on a :
∫ π

0

1

2 + cos(x)
dx =

∫ π

0

1 + tan2(x/2)

3 + tan2(x/2)
dx =

∫ +∞

0

1

3 + u2
× 2 du
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On remarque que notre intégrale sur un segment a été transformée en une intégrale impropre mais
plus facile à calculer :

∫ +∞

0

2

3 + u2
du = lim

A→+∞

[
2√
3
arctan(u/

√
3)

]A

0

= lim
A→+∞

2√
3
arctan(A/

√
3) =

π√
3

En conclusion
∫ π

0

1

2 + cos(x)
dx =

π√
3
.

4 Cas des fonctions paires et impaires

Théorème 19
Soit f une fonction continue sur ]− a; a[ avec a ∈ R

+ ∪ {+∞}.
— Si f est paire et si

∫ a

0

f(t) dt est convergente alors
∫ a

−a

f(t) dt est convergente et :

∫ a

−a

f(t) dt = 2

∫ a

0

f(t) dt.

— Si f est impaire et si
∫ a

0

f(t) dt est convergente alors
∫ a

−a

f(t) dt est convergente et :

∫ a

−a

f(t) dt = 0.

Démonstration :

— L’intégrale
∫ a

−a

f(t) dt est doublement impropre donc sa nature est déterminée par la nature de
∫ a

0

f(t) dt et
∫ 0

−a

f(t) dt. Par définition d’une intégrale doublement impropre, en cas de convergence :
∫ a

−a

f(t) dt =
∫ 0

−a

f(t) dt +
∫ a

0

f(t) dt.

Montrons que
∫ 0

−a

f(t) dt est de même nature que
∫ a

0

f(t) dt et que ces deux intégrales sont égales.

Effectuons le changement de variable u = −t sur l’intégrale
∫ a

0

f(t) dt.

La fonction t 7→ −t est strictement décroissante sur [0; a[. De plus on a du = − dt et u varie de 0 à
−a.

D’après le théorème de changement de variable généralisé,
∫ a

0

f(t) dt et
∫ −a

0

f(−u) (− du) sont de

même nature et égales en cas de convergence. Donc si
∫ a

0

f(t) dt est convergente on a :

∫ a

0

f(t) dt =
∫ −a

0

f(−u) (− du) =
f paire

−
∫ −a

0

f(u) du =

∫ 0

−a

f(u) du.

En conclusion, si
∫ a

0

f(t) dt est convergente,
∫ 0

−a

f(u) du est convergente et donc
∫ a

−a

f(t) dt est

convergente. De plus : ∫ a

−a

f(t) dt = 2

∫ a

0

f(t) dt.

— Avec la même décomposition et le même changement de variable que précédemment on a :
∫ a

0

f(t) dt =
∫ −a

0

f(−u) (− du) =
f impaire

∫ −a

0

f(u) du = −
∫ 0

−a

f(u) du.
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Donc, si
∫ a

0

f(t) dt est convergente alors
∫ a

−a

f(t) dt est convergente et

∫ a

−a

f(t) dt =
∫ 0

−a

f(t) dt+
∫ a

0

f(t) dt = −
∫ a

0

f(t) dt+
∫ a

0

f(t) dt = 0.

✷

5 Une première intégrale de référence

Théorème 20

Pour tout α > 0,
∫ +∞

0

e−αx dx est une intégrale convergente et
∫ +∞

0

e−αx dx =
1

α
.

Démonstration :

(i) La fonction f : x 7→ e−αx est continue sur [0; +∞[. Le seul problème se trouve donc en +∞.

(ii) Soit A ∈ [0; +∞[. On a
∫ A

0

e−αx dx =

[

− 1

α
e−αx

]A

0

= −e−αA

α
+

1

α
.

(iii) De plus lim
A→+∞

−e−αA

α
+

1

α
=

1

α
, car α > 0.

(iv) Donc
∫ +∞

0

e−αx dx est convergente et
∫ +∞

0

e−αx dx =
1

α
.

✷

IV Critères de convergence pour les fonctions positives

Pour l’instant, la seule méthode donc nous disposons pour déterminer la nature de
∫ b

a

f(t) dt nécessite

la connaissance d’une primitive de f . Or, il n’est pas toujours possible de déterminer une telle primitive.
Nous allons donc mettre en place une méthode pour contourner le problème du calcul de la primitive.

1 Convergence absolue

Définition 7
Soit f une fonction continue sur I.

On dit que l’intégrale

∫

I

f(t) dt est absolument convergente si, et seulement si, l’intégrale
∫

I

|f(t)| dt est convergente.

Théorème 21 : Convergence absolue ⇒ convergence

Si l’intégrale
∫

I

f(t) dt est absolument convergente alors l’intégrale
∫

I

f(t) dt est convergente.
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Propriété 9 : Inégalité triangulaire

Si a 6 b (dans le cas où a et b sont réels) et si
∫

I

f(t) dt est absolument convergente, alors :

∣
∣
∣
∣

∫

I

f(t) dt

∣
∣
∣
∣
6

∫

I

|f(t)| dt.

2 Critères de convergences pour les intégrales de fonctions positives

Dans toute cette partie, on considère a ∈ R et b ∈ R ∪ {+∞} tel que si b ∈ R, a < b.
f et g désignent deux fonctions continues et positives sur [a; b[ . Tous les résultats énoncés pourront

être adaptés à des fonctions continues sur ]a; b] avec a ∈ R ∪ {−∞} et b ∈ R.

a Critères de majoration et minoration pour les intégrales de fonctions positives

Théorème 22 : Majoration par une fonction dont l’intégrale est convergente

Si







f est continue sur [a; b[
∃c ∈ [a; b[ et g continue sur [c; b[
tels que ∀t ∈ [c; b[, 0 6 f(t) 6 g(t)
∫ b

c

g(t) dt est convergente

, alors
∫ b

a

f(t) dt est convergente.

Théorème 23 : Minoration par une fonction dont l’intégrale est divergente

Si







f est continue sur [a; b[
∃c ∈ [a; b[ et g continue sur [c; b[
tels que ∀t ∈ [c; b[, f(t) > g(t) > 0
∫ b

c

g(t) dt est divergente

, alors
∫ b

a

f(t) dt est divergente.

Exemple 11 :

Déterminons la nature de l’intégrale
∫ +∞

1

e−t

2t + 1
dt.

(i) La fonction t 7→ e−t

2t+ 1
est continue sur [1; +∞[, donc le problème ne se pose qu’en +∞.

(ii) Pour tout t > 1, 0 6
e−t

2t + 1
6 e−t.

(iii) Or
∫ +∞

1

e−t dt est une intégrale convergente car 1 > 0 donc, d’après le critère de majoration sur les

intégrales de fonctions positives, l’intégrale
∫ +∞

1

e−t

2t + 1
dt est convergente.

Exemple 12 :

Déterminons la nature de l’intégrale
∫ +∞

1

sin(t) + 2

t
dt.

(i) La fonction t 7→ sin(t) + 2

t
est continue sur [1; +∞[, donc le problème ne se pose qu’en +∞.

(ii) ∀t > 1,
sin(t) + 2

t
>

1

t
> 0.
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(iii) On a vu dans l’exemple 3 que
∫ +∞

1

1

t
dt est une intégrale divergente. Donc, d’après le critère de

minoration pour les intégrales de fonctions positives,
∫ +∞

1

sin(t) + 2

t
dt est une intégrale divergente.

Exemple 13 :

1. Montrer que l’intégrale
∫ +∞

1

1

t2
dt est convergente.

2. En déduire la nature de
∫ +∞

0

cos(t)

t2 + 1
dt.

1. (i) La fonction f : t 7→ 1

t2
est continue sur [1; +∞[ donc le problème ne se pose qu’en +∞.

(ii) Soit A ∈ [1; +∞[. On a
∫ A

1

1

t2
dt =

[

−1

t

]A

1

= − 1

A
+ 1.

(iii) De plus lim
A→+∞

1− 1

A
= 1.

(iv) Donc l’intégrale
∫ +∞

1

1

t2
dt est convergente.

2. (i) La fonction t 7→ cos(t)

t2
est continue sur [0; +∞[, donc le problème ne se pose qu’en +∞.

(ii) Pour tout t > 1, on a 0 6

∣
∣
∣
∣

cos(t)

t2 + 1

∣
∣
∣
∣
6

1

t2

(iii) D’après la question précédente
∫ +∞

1

1

t2
dt est convergente, donc d’après le critère de majoration

sur les intégrales de fonctions positives,
∫ +∞

0

∣
∣
∣
∣

cos(t)

t2 + 1

∣
∣
∣
∣

dt est convergente.

(iv) En conclusion
∫ +∞

0

cos(t)

t2 + 1
dt est une intégrale absolument convergente donc convergente.

b Critère d’équivalence pour les intégrales de fonctions positives

Théorème 24 : Critère d’équivalence pour les intégrales de fonctions positives

Si







f et g sont continues sur [a; b[
f ou g positive au voisinage de b
f(t) ∼

t→b
g(t)

, alors
∫ b

a

f(t) dt et
∫ b

a

g(t) dt sont de même nature.

Exemple 14 :

Déterminons la nature de l’intégrale
∫ +∞

0

t2 − 5t+ 7

(t + 1)(4t2 − t+ 2)
dt.

(i) La fonction t 7→ t2 − 5t+ 7

(t + 1)(4t2 − t + 2)
est continue sur [0; +∞[ (dénominateur non nul sur [0; +∞[),

donc le problème ne se pose qu’en +∞.

(ii) Au voisinage de +∞ :
t2 − 5t+ 7

(t + 1)(4t2 − t + 2)
∼

t→+∞

t2

t× 4t2
=

1

4t
.

De plus pour tout t > 0,
1

4t
> 0.
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(iii) Or, on a vu dans l’exemple 3 que l’intégrale
∫ +∞

1

1

t
dt est divergente donc l’intégrale

∫ +∞

1

1

4t
dt

est divergente. Ainsi, d’après le critère des équivalents sur les intégrales de fonctions positives,
∫ +∞

1

t2 − 5t+ 7

(t+ 1)(4t2 − t+ 2)
dt est divergente.

(iv) En conclusion, comme il n’y avait pas de problème en 0,
∫ +∞

0

t2 − 5t+ 7

(t+ 1)(4t2 − t+ 2)
dt est une intégrale

divergente.

Remarque :

Pour l’argument de positivité des fonctions, il suffit de vérifier que l’une des deux fonctions est positive.

3 Une deuxième intégrale de référence

Théorème 25

L’intégrale
∫ +∞

−∞
e−

x
2

2 dx est convergente et
∫ +∞

−∞
e−

x
2

2 dx =
√
2π.

Démonstration :

Le programme officiel stipule que la valeur de cette intégrale est admise en BCPST. Nous allons
uniquement montrer la convergence de cette intégrale.

Comme la fonction x 7→ e−
x
2

2 est paire, d’après le théorème 19 , il suffit de montrer que
∫ +∞

0

e−
x
2

2 dx

est convergente. Pour tout x > 1, x2
> x, donc 0 < e−

x
2

2 6 e−
x

2 .

Or on sait que
∫ +∞

0

e−
x

2 dx est convergente car
1

2
> 0 (théorème 20).

Donc, d’après le critère de majoration pour les intégrales de fonctions positives,
∫ +∞

0

e−
x
2

2 dx est

convergente.

✷
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