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Dans tout ce chapitre, K sera égal à R ou C. n et p désigneront deux entiers naturels non nuls.

I Généralités sur les espaces vectoriels

1 Définition

Définition 1
Soit E un ensemble muni d’une opération d’addition notée + et d’une opération de multiplication par
un élément de K notée ·.
On dit que (E,+, ·) est un K-espace vectoriel si, et seulement si :

— (E,+) est un groupe commutatif, c’est-à-dire :
* ∀(−→u ,−→v ) ∈ E2, −→u +−→v ∈ E ; (Loi interne)
* ∀(−→u ,−→v ,−→w ) ∈ E3, (−→u +−→v ) +−→w = −→u + (−→v +−→w ) ; (Associativité)
* ∃−→e ∈ E tel que ∀−→u ∈ E, −→u +−→e = −→e +−→u = −→u ;
* ∀−→u ∈ E, ∃−→v ∈ E, tel que −→u +−→v = −→v +−→u = −→e ;
* ∀(−→u ,−→v ) ∈ E2, −→u +−→v = −→v +−→u ; (Commutativité)

— l’opération · vérifie :
* ∀λ ∈ K, et ∀−→u ∈ E, λ · −→u ∈ E ;
* ∀(λ, µ) ∈ K

2, ∀−→u ∈ E, λ · (µ · −→u ) = (λµ) · −→u :
* ∀−→u ∈ E, 1 · −→u = −→u :
* ∀(λ, µ) ∈ K

2, ∀−→u ∈ E, (λ+ µ) · −→u = λ · −→u + µ · −→u ; (Distributivité)
* ∀λ ∈ K, ∀(−→u ,−→v ) ∈ E2, λ · (−→u +−→v ) = λ · −→u + λ · −→v . (Distributivité)

Les éléments d’un espace vectoriel s’appellent des vecteurs et les éléments de K s’appellent des sca-
laires.

Théorème - définition 1
Soit E un K-espace vectoriel.

— Il existe un UNIQUE vecteur −→e ∈ E tel que pour tout −→u ∈ E, −→u +−→e = −→e +−→u = −→u .

Ce vecteur s’appelle le vecteur nul de E et on le note très souvent
−→
0 E.

— Soit −→u ∈ E. Il existe un UNIQUE vecteur −→v vérifiant −→u +−→v = −→v +−→u =
−→
0E.

Ce vecteur s’appelle l’opposé de −→
u et on le note −−→u .

Démonstration :

— Supposons qu’il existe deux vecteurs −→e et
−→
f de E tels que, pour tout −→u ∈ E,

−→u +−→e = −→e +−→u = −→u (1) et −→u +
−→
f =

−→
f +−→u = −→u (2).

En utilisant la relation (1) en remplaçant −→u par
−→
f , on obtient

−→
f +−→e =

−→
f .

En utilisant la relation (2) en remplaçant −→u par −→e , on obtient
−→
f +−→e = −→e .

Donc
−→
f = −→e .

— Soit −→u ∈ E. Supposons qu’il existe deux vecteurs −→v et −→w de E tels que :

−→u +−→v = −→v +−→u =
−→
0E et −→u +−→w = −→w +−→u =

−→
0E.
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On a alors

−→v +−→u +−→w = (−→v +−→u ) +−→w
=
−→
0 E +−→w

= −→w
et −→v +−→u +−→w = −→v + (−→u +−→w )

= −→v +
−→
0 E

= −→v

Donc −→v = −→w .

✷

Remarque :

Pour alléger les notations, on écrira : −→u + (−−→v ) = −→u −−→v .

Propriété 1
Soient −→u et −→v deux éléments d’un K-espace vectoriel E et λ ∈ K.

— λ.
−→
0 E =

−→
0 E et 0.−→u =

−→
0 E .

— (−λ).−→u = −(λ.−→u ) et λ.(−−→u ) = −(λ.−→u ).
— λ.(−→u −−→v ) = λ.−→u − λ.−→v .

— λ.−→u =
−→
0 E ⇔ λ = 0 ou −→u =

−→
0 E .

Démonstration :

— Soit λ ∈ K :
λ.
−→
0 E = λ.(

−→
0 E +

−→
0 E) = λ.

−→
0 E + λ.

−→
0 E .

Donc λ.
−→
0 E + λ.

−→
0 E = λ.

−→
0 E et en ajoutant de chaque côté l’opposé de λ.

−→
0 E on obtient que

λ.
−→
0 E =

−→
0 E .

Soit −→u ∈ E :

0.−→u = (0 + 0).−→u = 0.−→u + 0.−→u .

On ajoute alors de chaque côté −0.−→u et on obtient que 0.−→u =
−→
0 E.

— Soit −→u ∈ E :
λ.−→u + (−λ).−→u = (λ+ (−λ)).−→u = 0.−→u =

−→
0 E.

Par unicité de l’opposé, on a bien (−λ).−→u = −(λ.−→u ).

De même, λ.−→u + λ.(−−→u ) = λ.(−→u + (−−→u )) = λ.
−→
0 E =

−→
0 E .

Donc λ.(−−→u ) = −(λ.−→u ).
— Découle du point précédent et des règles de distributivité.
— ⇐= : découle directement du premier point.

=⇒ : Supposons que λ.−→u =
−→
0 E.

Si λ 6= 0 alors on a
1

λ
. (λ.−→u ) =

1

λ
.
−→
0 E =

−→
0 E. De plus

1

λ
. (λ.−→u ) =

(
1

λ
× λ

)

.−→u = 1.−→u = −→u .

Donc −→u =
−→
0 E.

Ainsi on a λ = 0 ou −→u =
−→
0 E.

✷
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Remarques :

— Pour alléger les calculs on écrira λ−→u au lieu de λ.−→u .
— En pratique, en BCPST, on utilise rarement cette définition pour montrer qu’un ensemble est un

espace vectoriel. Nous verrons comment répondre à ce genre de question dans la partie suivante.
Cette définition vous sert surtout à comprendre quelles sont les opérations autorisées sur les éléments
d’un espace vectoriel.

Théorème 2 : Les classiques

Les ensembles ci-dessous sont des K-espaces vectoriels :

Notation Description

K
n (n ∈ N

∗) ensemble des n-uplets de scalaires (notation : (x1, x2, · · · , xn) )

Mn,p(K) ensemble des matrices à n lignes et p colonnes

K[X ] ensemble des polynômes à coefficients dans le corps K

Kn[X ] (n ∈ N) ensemble des polynômes de degré inférieur ou égal à n

F (I,K) (ou K
I) ensemble des fonctions d’un intervalle I ⊂ R dans K

F (U,K) ensemble des fonctions de U (pavé ouvert de R
2) dans K

Dans tout le chapitre E désigne un K-espace vectoriel et on dira souvent tout simplement
E est un espace vectoriel.

2 Familles de vecteurs

a Combinaisons linéaires, sous-espace engendré

Définition 2
Soit (−→u i)i∈I une famille finie de vecteurs de E et−→v un vecteur de E. On dit que−→v est une combinaison
linéaire de la famille (−→u i)i∈I , si, et seulement s’il existe une une famille (λj)j∈I d’éléments de K

tels que :
−→v =

∑

j∈I

λj
−→u j .

Remarque :

Le choix des λj n’est pas forcément unique et ces scalaires peuvent être nuls.

Exemple 1 :

— La fonction x 7→ 3 cos(x) − 2 sin(x) + ex est une combinaison linéaire de la famille de fonctions
F = (cos, sin, exp). La fonction x 7→ (3 cos(x)− 2 sin(x))ex n’est pas une combinaison linéaire de la
famille F .

— Soit (−→u 0,
−→u 1, . . . ,

−→u n) une famille de vecteurs d’un espace vectoriel E.
n∑

k=0

(−1)k−→u k est une combinaison linéaire de la famille (−→u 0,
−→u 1, . . . ,

−→u n).
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Ce que je dois savoir faire :
Je dois savoir déterminer si un vecteur donné est une combinaison linéaire d’une famille de vecteurs

donnée :
Exemple 2 :

Soit M =

(
3 4
−7 3

)

, A =

(
1 3
−1 2

)

et B =

(
−1 2
5 1

)

.

La matrice M est-elle une combinaison linéaire de la famille (A,B) ?
En d’autres termes on cherche à savoir si on peut trouver deux réels que pour l’instant nous allons

noter a et b et qui vérifient : M = aA+ bB
Or on a :

M = aA+ bB ⇔
(

3 4
−7 3

)

= a

(
1 3
−1 2

)

+ b

(
−1 2
5 1

)

⇔
(

3 4
−7 3

)

=

(
a− b 3a+ 2b
−a + 5b 2a+ b

)

⇔







a− b = 3
3a+ 2b = 4
−a+ 5b = −7
2a+ b = 3

⇔







a = 3 + b
5b+ 9 = 4
4b− 3 = −7
3b+ 6 = 3

⇔
{

b = −1
a = 2

Donc on a M = 2A−B et donc M est une combinaison linéaire de la famille (A,B). On remarque que
le choix de a et b est ici unique mais ça n’est pas forcément le cas.

Définition 3
Soit (−→u 1, . . . ,

−→u p) une famille finie de vecteurs de E. L’ensemble de toutes les combinaisons linéaires
possibles de cette famille est un sous-ensemble de E appelé sous-espace engendré par la famille
(
−→
u 1, . . . ,

−→
u p

)
et noté Vect (−→u 1, . . . ,

−→u p). Autrement dit :

Vect (−→u 1, . . . ,
−→u p) =

def.

{
p
∑

j=1

λj
−→u j / (λ1, . . . , λp) ∈ K

p

}

.

Ce que je dois savoir faire :
Il faut savoir exprimer un ensemble donné sous la forme Vect(· · · ).
Exemple 3 :

Considérons l’ensemble E =

{(
x 2x− y
y x+ 2y

)

/(x, y) ∈ R
2

}

. On voudrait écrire E comme l’ensemble

des combinaisons linéaire d’une famille de matrices bien fixée. Il faut donc faire apparaitre « les para-
mètres » comme des coefficients de la combinaison linéaire :

E =

{(
x 2x
0 x

)

+

(
0 −y
y 2y

)

/(x, y) ∈ R
2

}

=

{

x

(
1 2
0 1

)

+ y

(
0 −1
1 2

)

/(x, y) ∈ R
2

}

= Vect

((
1 2
0 1

)

,

(
0 −1
1 2

))

Exemple 4 :

Considérons l’ensemble de polynômes : F = {aX2 + (3a+ 2b)X − 2a− b/(a, b) ∈ R
2}.

Pour exprimer cette ensemble sous forme de sous-espace engendré, il faut faire apparaitre une combi-
naison linéaire où a et b sont les coefficients :

F = {a(X2 + 3X − 2) + b(2X − 1)/(a, b) ∈ R
2} = Vect(X2 + 3X − 2, 2X − 1).
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Propriété 2
Soit E un espace vectoriel et (−→u 1, · · · ,−→u p) une famille de E.
Si −→u p est une combinaison linéaire de (−→u 1, · · · ,−→u p−1) alors :

Vect(−→u 1, · · · ,−→u p) = Vect(−→u 1, · · · ,−→u p−1).

Démonstration :

On suppose donc que −→up est une combinaison linéaire de (−→u1, . . . ,
−−→up−1), c’est-à-dire qu’il existe

(a1, . . . , ap−1) ∈ K
p−1 tel que : −→up =

p−1
∑

i=1

ai
−→ui .

Montrons l’égalité des deux ensembles par double inclusion.
— Soit −→x ∈ Vect(−→u1, . . . ,

−→up). Par définition d’un sous-espace engendré, il existe donc (λ1, . . . , λp) ∈ K
p

tel que −→x =

p
∑

i=1

λi
−→ui . On a alors :

−→x =

p
∑

i=1

λi
−→ui =

p−1
∑

i=1

λi
−→ui + λp

−→up =

p−1
∑

i=1

λi
−→ui + λp

(
p−1
∑

i=1

ai
−→ui

)

=

p−1
∑

i=1

(λi + λpai)
︸ ︷︷ ︸

∈K

−→ui

En conclusion, −→x ∈ Vect(−→u1, . . . ,
−−→up−1), c’est-à-dire Vect(−→u1, . . . ,

−→up) ⊂ Vect(−→u1, . . . ,
−−→up−1).

— Soit −→y ∈ Vect(−→u1, . . . ,
−−→up−1). Par définition d’un sous-espace engendré, il existe donc

(µ1, . . . , µp−1) ∈ K
p−1 tel que −→y =

p−1
∑

i=1

µi
−→ui . En posant arbitrairement µp = 0, on a alors

−→y =

p
∑

i=1

µi
−→ui ∈ Vect(−→u1, . . . ,

−→up).

Ainsi, Vect(−→u1, . . . ,
−−→up−1) ⊂ Vect(−→u1, . . . ,

−→up).
En conclusion, Vect(−→u1, . . . ,

−→up) = Vect(−→u1, . . . ,
−−→up−1).

✷

Remarques :

— Cette propriété est très importante et très utile en exercice.
— Pour avoir un énoncé simple, on énonce cette propriété avec le dernier vecteur de la famille mais

cette propriété fonctionne dès qu’un vecteur de la famille est une combinaison linéaire des autres.
(Réfléchir comment la démonstration s’adapte ! )

Exemple 5 :

Vect

((
1
1

)

,

(
3
−1

)

,

(
1
−1

)

,

(
3
3

))

= Vect

((
1
1

)

,

(
1
−1

)

,

(
3
−1

))

car

(
3
3

)

est une comb. lin. de

((
1
1

)

,

(
3
−1

)

,

(
1
−1

))

= Vect

((
1
1

)

,

(
1
−1

))

car

(
3
−1

)

=

(
1
1

)

+ 2

(
1
−1

)

.
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Exemple 6 :

On peut écrire que Vect(X + 1, X − 1, X) = Vect(X + 1, X − 1) car X =
1

2
(X + 1) +

1

2
(X − 1).

On peut aussi écrire que Vect(X +1, X− 1, X) = Vect(X +1, X) car X − 1 = (−1)× (X +1)+2×X.

Propriété 3
Soit F = (−→u1, . . . ,

−→up) une famille de vecteurs de E.
— Pour tout (i, j) ∈ J1; pK tel que i < j, on a

Vect(−→u1, . . . ,
−→ui , . . . ,

−→uj , . . . ,
−→up) = Vect(−→u1, . . . ,

−→uj , . . . ,
−→ui , . . . ,

−→up).

— Pour tout (λ1, . . . , λp) ∈ (K∗)p, Vect(−→u1, . . . ,
−→up) = Vect(λ1

−→u1, . . . , λp
−→up).

Exemple 7 :

Vect(1−X2, 2X + 2) = Vect(X2 − 1, X + 1)

multiplication du premier vecteur par − 1 et du deuxième vecteur par
1

2
= Vect(X + 1, X2 − 1) changement de l’ordre.

b Familles génératrices

Définition 4
Soit (−→u 1, . . . ,

−→u p) une famille finie de vecteurs de E.
On dit que la famille (−→u 1, . . . ,

−→u p) est génératrice de E, ou encore engendre E, si, et seulement
si, on a E = Vect (−→u 1, . . . ,

−→u p).

Remarque :

Autrement dit, la famille (−→u 1, . . . ,
−→u p) est génératrice de E si, et seulement si, tous les vecteurs de E

peuvent s’écrire comme une combinaison linéaire de la famille (−→u 1, . . . ,
−→u p) et réciproquement toutes les

combinaisons linéaires de la famille (−→u 1, . . . ,
−→u p) sont des éléments de E.

Ce que je dois savoir faire :
Je dois savoir trouver une famille génératrice d’un espace vectoriel E : il suffit pour cela d’écrire E sous

la forme Vect(. . .) donc c’est exactement la même méthode que le point précédent.

Exemples 8 :

— Considérons l’ensemble E =

{(
x 2x− y
y x+ 2y

)

; (x, y) ∈ R
2

}

.

On a vu dans l’exemple 3 que E = Vect

((
1 2
0 1

)

,

(
0 −1
1 2

))

.

Ainsi la famille

((
1 2
0 1

)

,

(
0 −1
1 2

))

est une famille génératrice de E.

— Dans l’exemple 4, on a vu que F = {aX2+(3a+2b)X−2a−b/(a, b) ∈ R
2} = Vect(X2+3X−2, 2X−1).

On peut donc dire que la famille (X2 + 3X − 2, 2X − 1) est génératrice de F .
— On remarque que Kn[X ] = {a0 + a1X + . . .+ anX

n/(a0, . . . , an) ∈ K
n+1} = Vect(1, X, . . . , Xn)

Donc la famille (1, X, ..., Xn) est une famille génératrice de Kn[X ].
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c Familles libres

Définition 5

— Une famille finie (−→u1, ...,
−→up) de vecteurs de E est dite libre si, et seulement si, pour tout p-uplet

(λ1, ..., λp) ∈ K
p on a :

p
∑

i=1

λi
−→ui =

−→
0 E ⇐⇒ λ1 = ... = λp = 0.

— Une famille finie (−→u1, ...,
−→up) de vecteurs de E est dite liée si, et seulement s’il existe un p-uplet

(λ1, ..., λp) ∈ K
p tel que :

(λ1, . . . , λp) 6= (0, . . . , 0) et

p
∑

i=1

λi
−→ui =

−→
0 E.

Remarque :

Une famille qui n’est pas libre est liée.

Ce que je dois savoir faire :
Je dois savoir démontrer qu’une famille est libre ou liée en utilisant la définition.

Exemple 9 :

La famille (1 +X +X2, 3 +X + 5X2, 2 +X + 3X2) est-elle une famille libre ou liée de R[X ] ?
On cherche tous les réels a, b, c vérifiant :

a(1 +X +X2) + b(3 +X + 5X2) + c(2 +X + 3X2) = 0

⇔(a + 5b+ 3c)X2 + (a+ b+ c)X + (a+ 3b+ 2c) = 0

⇔







a+ 5b+ 3c = 0
a+ b+ c = 0
a+ 3b+ 2c = 0

car deux polynômes sont égaux ssi leurs coeff sont égaux,

⇔







a+ b+ c = 0
4b+ 2c = 0
2b+ c = 0

⇔
{

a = b
c = −2b .

On voit donc qu’il y a une infinité de solutions pour a, b, c, en particulier a = 1, b = 1 et c = −2 est
une solution non nulle donc la famille est liée.

On aurait pu voir de tête que X2 +X + 1 = (−1)× (5X2 +X + 3) + 2× (3X2 +X + 2). Dans ce cas,
aucun calcul nécessaire sur la copie, il suffit d’écrire cette relation et ensuite écrire « donc la famille est
liée ».

Exemple 10 :

On considère la famille (f, g, h) composée de trois fonctions de R dans R définies par :

f : x 7→ sin(x) g : x 7→ cos(x) h : x 7→ sin(2x)

Montrons que cette famille est libre.
On cherche tous les réels a, b et c tels que :

a× f + b× g + c× h = 0

⇔∀x ∈ R, a f(x) + b g(x) + c h(x) = 0.
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Méthode à retenir : comme cette relation doit être valable pour tout réel x, elle doit en particulier
être vraie pour certaines valeurs bien choisies de x.

On a donc :

a× f + b× g + c× h = 0⇔∀x ∈ R, a f(x) + b g(x) + c h(x) = 0

=⇒







a× 0 + b× 1 + c× 0 = 0 en évaluant en x = 0

a× 1 + b× 0 + c× 0 = 0 en évaluant en x =
π

2

a×
√
2

2
+ b×

√
2

2
+ c× 1 = 0 en évaluant en x =

π

4

=⇒







b = 0
a = 0
c = 0

On a donc montré que a f + b g + c h = 0 =⇒ a = b = c = 0.
La réciproque étant évidente on a donc montré que a f + b g + c h = 0 ⇐⇒ a = b = c = 0. On peut

affirmer que la famille (f, g, h) est libre.

Voici maintenant quelques propriétés des familles libres ou liées.

Propriété 4
Soit E un espace vectoriel.

— Si on change l’ordre des vecteurs d’une famille libre (resp. liée), on obtient encore une famille
libre (resp. liée).

— Toute sous-famille d’une famille libre est encore libre.
— Toute famille contenant le vecteur nul est liée.
— Toute famille contenant plusieurs fois le même vecteur est liée.
— Soit F une famille libre de E et −→u un vecteur de E.

La famille (F ,−→u ) est liée si, et seulement si, −→u est combinaison linéaire de la famille F .

La propriété ci-dessous donne trois techniques très utiles en exercice pour montrer qu’une famille est
libre.

Propriété 5

— Une famille contenant un seul vecteur est libre si, et seulement si, le vecteur est non nul.
— La famille (−→u1,

−→u2) est liée si, et seulement s’il existe λ ∈ R tel que −→u1 = λ−→u2 ou −→u2 = λ−→u1. On dit
alors que les vecteurs −→u1 et −→u2 sont colinéaires ou proportionnels.

— Toute famille finie de polynômes non nuls et de degrés deux à deux distincts est libre.

Remarque :

On dit parfois qu’une famille de polynômes non nuls et de degrés deux à deux distincts est échelonnée
en degrés.

Exemples 11 :

— La famille









1
0
1







 est une famille libre de M3,1(R) car formée d’un seul vecteur non nul.

— La famille

((
1 0
1 0

)

,

(
0 1
1 0

))

est une famille libre de M2(R) car formée deux vecteurs visiblement

non proportionnels.
— La famille (1, X5 + 2X3, X2 + 1, X4) est une famille libre de R[X ] c’est une famille de polynômes

non nuls et de degrés deux à deux distincts.
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II Généralités sur les sous-espaces vectoriels

Définition 6
Soit E un K-espace vectoriel et F un ensemble. On dit que F est un sous-espace vectoriel de E si,
et seulement si :

— F est un sous-ensemble de E,
— F est non vide,
— pour tout couple (−→u ,−→v ) de vecteurs de F et tout scalaire λ ∈ K, λ−→u +−→v est un vecteur de F .

Propriété 6
Si F est un sous-espace vectoriel de E alors F , muni des mêmes opérations que E, est un K-espace
vectoriel.

Propriété 7

Si F est un sous-espace vectoriel de E alors
−→
0 E ∈ F .

Démonstration :

Par définition, F n’est pas vide. Soit donc −→u ∈ F .
Toujours par définition le vecteur (−1)−→u +−→u appartient à F . Or (−1)−→u +−→u =

−→
0 E .

Donc
−→
0 E ∈ F .

✷

Propriété 8
Soit (−→u1, ...,

−→up) une famille finie de vecteurs de E. Alors le sous-espace engendré Vect (−→u1, ...,
−→up) est un

sous-espace vectoriel de E.

Démonstration :

Notons F = Vect (−→u1, ...,
−→up).

— F est constitué de toutes les combinaisons linéaires de la famille (−→u1, ...,
−→up) qui est formée d’éléments

de E. Par définition d’un espace vectoriel on a donc F ⊂ E.
— On a

−→
0 E = 0−→u 1 + . . .+ 0−→u p, donc

−→
0 E ∈ F et ainsi F n’est pas vide.

— Soient −→a et
−→
b deux éléments de F . On peut donc écrire ces deux vecteurs sous la forme :

−→a =

p
∑

i=1

λi
−→u i et

−→
b =

p
∑

i=1

µi
−→u i,

avec (λ1, . . . , λp) ∈ K
p et (µ1, . . . , µp) ∈ K

p.
Soit δ ∈ K.

On a alors δ−→a +
−→
b =

p
∑

i=1

(δλi + µi)
−→u i.

Donc δ−→a +
−→
b est une combinaison linéaire de la famille (−→u1, ...,

−→up) et appartient donc à F .
En conclusion, F est bien un sous-espace vectoriel de E.

✷

Propriété 9
Soit I un intervalle de R.

— L’ensemble des fonctions dérivables sur I est un sous-espace vectoriel de F (I,R) et donc un
R-espace vectoriel.

— L’ensemble des fonctions de classe C
k sur I (k ∈ N ou k = ∞) est un sous-espace vectoriel de

F (I,R) et donc un R-espace vectoriel.
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Ce que je dois savoir faire :
Je dois savoir montrer qu’un ensemble F est un sous-espace vectoriel d’un espace vectoriel donné ou

classique.
Il existe deux principales méthodes :

— J’utilise la définition.
— J’écris mon ensemble sous la forme Vect(· · · ) et je conclus grâce à la propriété 8.

Exemple 12 :

Montrons que l’ensemble E = {aX2 + 2aX + 3b/(a, b) ∈ R
2} est un sous-espace vectoriel de R[X ].

Méthode 1 : (fonctionne tout le temps, mais un peu longue)
— On remarque que E est bien un sous ensemble de R[X ].
— Il faut ensuite vérifier que E n’est pas vide. On remarque que 0 = 0X2 + 2 × 0 × X + 3 × 0. Cela

signifie que 0 ∈ E et donc que E n’est pas vide.
— On prend alors deux éléments quelconques de E :

P (X) = a1X
2 + 2a1X + 3b1 Q(X) = a2X

2 + 2a2X + 3b2

Puis on prend un réel α. Le but est de montrer que αP +Q est un élément de E :

αP (X) +Q(X) = α(a1X
2 + 2a1X + 3b1) + (a2X

2 + 2a2X + 3b2)

= (αa1 + a2)
︸ ︷︷ ︸

a3

X2 + 2 (αa1 + a2)
︸ ︷︷ ︸

a3

X ++3 (αb1 + b2)
︸ ︷︷ ︸

b3

Donc αP (X) +Q(X) ∈ E
En conclusion E est bien un sous-espace vectoriel de R[X ].
Méthode 2 : (lorsqu’elle fonctionne elle est plus rapide)

E = {a(X2 + 2X) + b× 3/(a, b) ∈ R
2} = Vect(X2 + 2X, 3)

E est un sous-espace engendré par une famille d’éléments de R[X ] donc E est un sous-espace vectoriel
de R[X ] (on utilise ici la propriété 8).

Ce que je dois savoir faire :
Je dois savoir montrer qu’un ensemble E est un espace vectoriel :
On montre en fait que c’est un sous-espace vectoriel d’un espace vectoriel classique ou donné dans

l’énoncé.

Exemple 13 :

On note Sn(K) l’ensemble des matrices symétriques de Mn(K).
Montrons que Sn(K) est un espace vectoriel.
Comme Sn(K) est un sous-ensemble de Mn(K) nous allons montrer que Sn(K) est un sous-espace

vectoriel de Mn(K).
— Sn(K) est un sous-ensemble de Mn(K).
— Sn(K) n’est pas vide car la matrice nulle est une matrice symétrique donc elle appartient à Sn(K).
— Soient A et B deux matrices de Sn(K) et λ ∈ K.

On souhaite montrer que λA+B appartient à Sn(K) :

(λA+B)T = λAT +BT = λA+B

car A et B sont symétriques.
On a donc bien λA+B ∈ Sn(K).

En conclusion Sn(K) est un sous-espace vectoriel de Mn(K) donc Sn(K) est un espace vectoriel.

Propriété 10
Soient F et G deux sous-espaces vectoriels de E. Alors F ∩G est un sous-espace vectoriel de E.

Cours BCPST2 Page 11 Espace vectoriels



Attention ce n’est en général pas vrai pour la réunion de deux sous-espaces.

Démonstration :

— Comme F et G sont des sous-espaces vectoriels de E, F ⊂ E et G ⊂ E donc F ∩G ⊂ E.
— Comme F et G sont des sous-espaces vectoriels de E, on a

−→
0 E ∈ F et

−→
0 E ∈ G.

Donc
−→
0 E ∈ F ∩G et ainsi F ∩G n’est pas vide.

— Soit −→a et
−→
b deux éléments de F ∩G et λ ∈ K.

Comme −→a ∈ F ,
−→
b ∈ F et λ ∈ K, on a λ−→a +

−→
b ∈ F .

Comme −→a ∈ G,
−→
b ∈ G et λ ∈ K, on a λ−→a +

−→
b ∈ G. Ainsi, λ−→a +

−→
b ∈ F ∩G.

En conclusion, F ∩G est un sous-espace vectoriel de E.

✷

Corollaire 1
L’intersection d’un nombre fini de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

Remarque :

Ce résultat se démontre par récurrence en utilisant la propriété précédente.

III Dimension d’un espace vectoriel

1 Bases

Définition 7
Soit F une famille finie d’éléments de E.
On dit que F est une base de E si, et seulement si, F est une famille à la fois libre et génératrice de
E.

Ce que je dois savoir faire :
Je dois savoir trouver une base d’un espace vectoriel donné.
On commence par trouver une famille génératrice de E (voir méthode sur les familles génératrices),

puis on montre que cette famille est libre. Enfin on conclut.

Exemple 14 :

Reprenons l’exemple 3 : E =

{(
x 2x− y
y x+ 2y

)

/(x, y) ∈ R
2

}

On a vu que la famille







(
1 2
0 1

)

︸ ︷︷ ︸

A

,

(
0 −1
1 2

)

︸ ︷︷ ︸

B







est génératrice de E.

Il faut alors montrer maintenant qu’elle est libre. Les matrices A et B ne sont visiblement pas propor-
tionnelles donc la famille (A,B) est libre. (ATTENTION cette méthode ne fonctionne que pour
les familles de deux vecteurs)

Donc la famille

((
1 2
0 1

)

,

(
0 −1
1 2

))

est libre et génératrice de E, c’est donc une base de E.

Exemple 15 :

Déterminons une base de Mn,p(K).
Pour tout i ∈ {1, . . . , n} et j ∈ {1, . . . , p}, on note Eij la matrice de Mn,p(K) dont tous les coefficients

sont nuls sauf le coefficient situé à la i-ème ligne et à la j-ème colonne qui vaut 1.
On remarque alors que Mn,p(K) = Vect(E11, E12, . . . , E1p, E21, . . . , E2p, . . . , En1, . . . , Enp).
De plus la famille (E11, E12, . . . , E1p, E21, . . . , E2p, . . . , En1, . . . , Enp) est libre (facile à montrer).
Donc la famille (E11, E12, . . . , E1p, E21, . . . , E2p, . . . , En1, . . . , Enp) est une base de Mn,p(K).
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Remarque :

Dans certains des espaces vectoriels classiques certaines bases « apparaissent comme des évidences ».
Ces bases s’appellent des bases canoniques et elles sont à connaitre par cœur.

Théorème 3 : Bases canoniques

— Soit n ∈ N
∗. Pour tout i ∈ {1, . . . , n}, on pose ei = (0, ..., 0 , 1 ,

︸︷︷︸

ième place

0, ..., 0).

La famille (e1, . . . , en) est la base canonique de K
n.

— Soit n ∈ N
∗. La famille (1, X,X2, . . . , Xn) est la base canonique de Kn[X ].

2 Coordonnées d’un vecteur

Théorème - définition 4
La famille (−→u1, ...,

−→un) est une base de E si, et seulement si, tout vecteur de E peut s’écrire, de manière
unique, comme une combinaison linéaire de la famille (−→u1, ...,

−→un). Les coefficients de cette combinaison
linéaire s’appellent les coordonnées du vecteur dans la base (−→u1, ...,

−→un).

Définition 8
Soit E un espace vectoriel et soit B = (−→u1, ...,

−→un) une base de E.
Soit −→u ∈ E, on considère λ1, . . . , λn les coordonnées de −→u dans la base B.

On note alors MatB(−→u ) =






λ1

...
λn




, et MatB(

−→u ) est appelée la matrice colonne des coordonnées

de −→
u dans la base B.

Ce que je dois savoir faire :
Je dois savoir trouver les coordonnées d’un vecteur dans une base donnée.
Pour « trouver les coordonnées du vecteur −→u dans la base B = (−→ei )i∈I » il faut trouver les scalaires

(ai)i∈I tels que :

−→u =
∑

i∈I

ai
−→ei .

C’est donc exactement la même méthode que pour savoir si −→u est une combinaison linéaire de la famille
(−→ei )i∈I .

La matrice colonne des coordonnées de −→u dans la base B se note MatB(
−→u ) et elle est égale à








a1
a2
...
an








.

Exemple 16 :

On se place dans l’espace vectoriel R2[X ] muni de la base B = (R0, R1, R2) où R0 = 1, R1 = X + 2 et
R2 = X2 − 2.

On considère le polynôme P = 4X2 − 3X − 12. Quelle est la matrice colonne des coordonnées de P
dans la base B ?

On doit ici chercher les coordonnées de P dans la base B, c’est-à-dire que l’on cherche les réels a, b et
c tels que :

P = aR0 + bR1 + cR2 ⇔ 4X2 − 3X − 12 = a+ b(X + 2) + c(X2 − 2)

⇔4X2 − 3X − 12 = cX2 + bX + a+ 2b− 2c⇔







c = 4
b = −3
a+ 2b− 2c = −12

⇔







c = 4
b = −3
a = 2
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Donc on a P = 2R0 − 3R1 + 4R2 et ainsi la matrice colonne des coordonnées de P dans la base B est

MatB(P ) =





2
−3
4



.

Remarque :

Il existe une situation dans laquelle trouver les coordonnées d’un vecteur ne nécessite aucun calcul :
lorsque l’on cherche les coordonnée dans une base canonique.

Par exemple les coordonnées du polynôme P précédent dans la base canonique de R2[X ] sont





−12
−3
4



.

3 Dimension

Définition 9
On dit que E est un espace vectoriel de dimension finie s’il existe une famille génératrice finie.
Un espace vectoriel qui n’est pas de dimension finie est dit de dimension infinie.

Exemple 17 :

Montrons que K[X ] est de dimension infinie.
Supposons que K[X ] est de dimension finie. Alors il existe (P1, . . . , Pk) une famille génératrice finie de

K[X ].
On note alors m = max(deg(Pi), 1 6 i 6 k).
D’après les propriétés des polynômes, il est alors impossible de trouver (a1, . . . , ak) tels que :

Xm+1 =
k∑

i=1

aiPi, car deg(Xm+1) > deg

(
k∑

i=1

aiPi

)

.

Ceci est absurde car Xm+1 ∈ K[X ] et on a supposé que (P1, . . . , Pk) est génératrice de K[X ].
Ainsi K[X ] n’admet pas de famille génératrice finie et donc est de dimension infinie.

Théorème 5
Soit E un espace vectoriel non réduit à {−→0 E}.
Si F est une famille génératrice finie de E, alors il existe une sous-famille de F qui est libre et
génératrice de E, c’est-à-dire une base de E.

Remarques :

— Ce théorème est une conséquence de la propriété 2.
— Ce théorème signifie que tout espace vectoriel non réduit à {−→0 E} de dimension finie admet des bases.

Théorème - définition 6
Soit E un espace de dimension finie non réduit à {−→0 E}.
Alors toutes les bases de E ont le même nombre d’éléments. Ce nombre entier est appelé dimension
de l’espace vectoriel E et est noté dim(E).

Par convention on dira que l’espace {−→0 E} est de dimension 0.

Remarque :

Résultat admis.

Théorème 7 : Dimensions des espaces vectoriels de référence

— dim(Kn) = n.
— dim(Kn[X ]) = n+ 1.

ATTENTION la dimension de Mn,p(K) est HORS PROGRAMME.
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Ce que je dois savoir faire :
Je dois savoir trouver la dimension d’un espace vectoriel.

— S’il s’agit d’un espace vectoriel classique, on récite son cours (théorème 7) ;
— Sinon LA SEULE MÉTHODE possible (à ce stade du cours) consiste à trouver une base B puis

compter le nombre de vecteurs dans la base. Ce nombre est la dimension cherchée. On pourra écrire
dim(E) = card(B) = ...

Exemple 18 :

Déterminons la dimension de l’espace vectoriel E = {(x, y, z) ∈ R
3/2x = 0 et 3y − z = 0}.

E n’est pas un espace vectoriel classique donc on ne connait pas sa dimension. La seule façon de trouver
cette dimension est de trouver une base de E.

On remarque tout d’abord que : E = {(0, y, 3y)/y ∈ R} = Vect((0, 1, 3)).
Donc la famille ((0, 1, 3)) est une famille génératrice de E.
De plus cette famille ne contient qu’un seul vecteur et ce vecteur n’est pas nul. Donc la famille B =

((0, 1, 3)) est libre.
Ainsi B = ((0, 1, 3)) est une base de E et on a dim(E) = card(B) = 1.

Exemples 19 :

— Reprenons l’exemple 14 : dim(E) = card

((
1 2
0 1

)

,

(
0 −1
1 2

))

= 2.

— Reprenons l’exemple 15 : dim(Mn,p(K)) = card(E11, E12, . . . , E1p, E21, . . . , E2p, . . . , En1, . . . , Enp) = n×p.

4 Propriétés importantes des espaces de dimension finie

Propriété 11
Soit E un espace de dimension finie n.

— Si F est une famille libre de E alors card(F ) 6 n.
— Si F est une famille génératrice de E alors card(F ) > n.

Conséquences :

— Dans un espace de dimension n, toute famille de strictement plus de n vecteurs est donc forcément
liée.

— Dans un espace de dimension n, toute famille de strictement moins de n vecteurs n’est jamais
génératrice.

Théorème 8
Soit E un espace vectoriel de dimension finie et F un sous-espace de E.
Alors F est un espace vectoriel de dimension finie et dim(F ) 6 dim(E).
De plus dim(F ) = dim(E)⇔ F = E.

Démonstration :

Si F = {−→0 E} alors on a dimF = 0 et donc dimF 6 dimE.

On suppose maintenant que F 6= {−→0 E}. Toute famille libre de F est aussi libre dans E. Comme E
est de dimension n une famille libre de E ne peut pas avoir plus de n vecteurs. Donc toutes les familles
libres de F ont moins de n vecteurs. Notons p le plus grand cardinal de toutes les familles libres de F et
(−→e 1, ...,

−→e p) une famille libre de F de cardinal maximal. D’après ce qu’on vient de dire p 6 n.
Montrons maintenant que la famille (−→e 1, ...,

−→e p) est une base de F .
Soit −→x ∈ F . Comme p est le plus grand cardinal des familles libres de F , la famille (−→e 1, ...,

−→e p,
−→x ),

qui est de cardinal p+1, est liée dans F . Donc il existe (α1, ..., αp+1) ∈ K
p+1, (α1, ..., αp+1) 6= (0, ..., 0), tels

que α1
−→e 1 + ... + αp

−→e p + αp+1
−→x = 0.

On a forcément αp+1 6= 0 car sinon la famille (−→e 1, ...,
−→e p) serait liée. Donc −→x =

p
∑

i=1

−αi

αp+1

−→e i.
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Donc la famille est bien génératrice de F et donc une base de F . Ainsi F est bien de dimension finie
et p = dimF 6 dimE.

De plus si dimF = dimE (donc n = p) la famille (−→e 1, ...,
−→e n) est à la fois une base de F et de E et

donc E = F . Réciproquement si E = F , alors dimE = dimF .

✷

Propriété 12
Soit E un espace de dimension finie n 6= 0 et F une famille finie de vecteurs de E.

— Si F est libre et card(F ) = n alors F est une base de E.
— Si F est génératrice et card(F ) = n alors F est une base de E.

Démonstration :

Démontrons uniquement le premier point.
On dispose donc d’un espace vectoriel E de dimension n 6= 0 et d’une famille F de n vecteurs de E

que l’on suppose libre.
On pose alors F = Vect(F ). La famille F est libre et génératrice de F donc c’est une base de F . Ainsi,

F est de dimension finie et dim(F ) = card(F ) = n.
De plus, F étant un sous-espace engendré par une famille de vecteurs de E, F est un sous-espace

vectoriel de E.
En résumé, F est un sous-espace vectoriel de E et dim(F ) = dim(E). Donc, d’après le théorème

précédent, E = F = Vect(F ).
La famille F est donc une base de E.

✷

Conséquences :

On tire de cette propriété deux nouvelles méthodes TRÈS IMPORTANTES pour montrer qu’une
famille donnée est une base d’un espace vectoriel donné.

Ce que je dois savoir faire :
Je dois savoir répondre à la question « Montrer que la famille B (donnée) est une base de l’espace

vectoriel E (donné) ». Vous disposez de deux méthodes :
Méthode 1 : s’applique lorsqu’on ne connait pas la dimension de E.
On montre que la famille B est libre et génératrice de E.
Méthode 2 : s’applique lorsqu’on connait, avant de commencer la question, la dimension de E.
On montre que B est une famille libre (ou génératrice) de E puis on dit « la famille B est une famille

libre (resp. génératrice) de E et card(B) = ... = dim(E) (... à remplacer par un chiffre en exercice) donc
B est une base de E ».

Exemple 20 :

Montrons que la famille B = ((0, 2,−5), (1, 0, 4), (1,−1, 0)) est une base de R
3.

On remarque tout de suite que l’on connait la dimension de R
3 donc on va appliquer la méthode 2.

Commençons par montrer que la famille B est libre :
Je cherche tous les réels a, b, c vérifiant :

a(0, 2,−5) + b(1, 0, 4) + c(1,−1, 0) = (0, 0, 0)⇔ (b+ c, 2a− c,−5a+ 4b) = (0, 0, 0)

⇔







b+ c = 0
2a− c = 0
−5a+ 4b = 0

⇔







b = −c = −2a
c = 2a
−13a = 0

⇔ a = b = c = 0

La famille B est donc libre.
De plus card(B) = 3 = dim(R3) donc B est une base de R

3.
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Théorème 9 : Théorème de la base incomplète
Soit E un espace vectoriel de dimension finie n ∈ N

∗ et (−→u1, . . . ,
−→up) une famille libre de E.

Alors on peut compléter cette famille en une base de E, c’est-à-dire qu’il existe (−→v1 , . . . ,−−→vn−p) des
vecteurs de E tels que la famille (−→u1, . . . ,

−→up,
−→v1 , . . . ,−−→vn−p) est une base de E.

Remarque :

Théorème admis. En BCPST, les exercices doivent vous guider pour compléter une famille libre en une
base.

5 Matrices et famille de vecteurs

Définition 10
Soit E un espace vectoriel et soit B = (−→u1, ...,

−→un) une base de E.
On considère une famille F = (−→w 1, . . .

−→w p) de vecteurs de E.
On appelle matrice des coordonnées de la famille

(
−→
w 1, . . .

−→
w p

)
dans la base B la matrice de

Mn,p(K) dont la jème colonne contient les coordonnées de −→w j dans la base B.
On note cette matrice MatB(F ).

Propriété 13
Soit E un espace vectoriel de dimension n 6= 0. Soit B = (−→u1, ...,

−→un) une base de E et F une famille
de vecteurs de E.

— F est libre si, et seulement si, rg(MatB(F )) = card(F ).
— F une base de E si, et seulement si, la matrice MatB(F ) est inversible.

Remarque :

Cela donne une nouvelle méthode pour montrer qu’une famille donnée est une famille libre ou est une
base d’un espace vectoriel donné dont on connait déjà une base.

Cette méthode est très adaptée aux espaces de références Kn et Kn[X ] car on utilise leur base canonique.

Exemple 21 :

On considère les vecteurs de C
3 suivants :

~u = (1, 2i, i + 1) ~v = (1, 0, 2) ~w = (0,−i, 3i)

(~u,~v, ~w) est-elle une base de C
3 ?

Notons Bc la base canonique de C
3. On a :

rg (MatBc
(~u,~v, ~w)) = rg









1 1 0
2i 0 −i

i + 1 2 3i







 = rg









1 1 0
0 −2i −i
0 1− i 3i







 L2 ← L2 − 2iL1

L3 ← L3 − (i + 1)L1

= rg









1 0 1
0 −i −2i
0 3i 1− i







 C2 ↔ C3

= rg









1 0 1
0 −i −2i
0 0 1− 7i







 L2 ← 3L2 + L3

= 3

Donc MatBc
(~u,~v, ~w) ∈ M3(C) et rg (MatBc

(~u,~v, ~w)) = 3, ce qui signifie que MatBc
(~u,~v, ~w) est inver-

sible. Ainsi, (~u,~v, ~w) est une base de C
3.
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Exemple 22 :

Soit P1 = X4 +X2 + 1, P2 = X3 +X et P3 = 5X4 + 4X3 + 3X2 + 2X + 1.
La famille (P1, P2, P3) est-elle une famille libre de R4[X ] ?

Notons Bc la base canonique de R4[X ]. On obtient aisément que MatBc
(P1, P2, P3) =









1 0 1
0 1 2
1 0 3
0 1 4
1 0 5









. On

a alors :

rg (MatBc
(P1, P2, P3)) = rg

















1 0 1
0 1 2
1 0 3
0 1 4
1 0 5

















= rg

















1 0 1
0 1 2
0 0 2
0 1 4
0 0 4

















L3 ← L3 − L1

L5 ← L5 − L1

= rg

















1 0 1
0 1 2
0 0 2
0 0 2
0 0 4

















L4 ← L4 − L2

= rg

















1 0 1
0 1 2
0 0 2
0 0 0
0 0 0

















L4 ← L4 − L3

L5 ← L5 − 2L3

= 3

Ainsi, rg (MatBc
(P1, P2, P3)) = card(P1, P2, P3) donc (P1, P2, P3) est une famille libre.

Définition 11
Soient B = (−→e1 , . . . ,−→en) et B

′ = (
−→
f1 , . . . ,

−→
fn) deux bases de E. On appelle matrice de passage de

la base B à la base B
′, et on note PB,B′, la matrice des coordonnées de la famille (

−→
f1 , . . . ,

−→
fn) dans

la base B.

Ce que je dois savoir faire :
Je dois savoir construire la matrice de passage entre deux bases.
Si B = (e1, · · · , en) et B

′ = (f1, · · · , fn) sont deux bases alors pour construire la matrice de passage
de B à B

′ je mets dans la jème colonne les coordonnées du vecteur fj dans la bases B.

Exemple 23 :

Soient B1 = (P0, P1, P2, P3) la base canonique de R3[X ], et B2 = (R0, R1, R2, R3), avec R0 = 1,
R1 = X − 1, R2 = (X − 1)2, R3 = (X − 1)3 une autre base de cet espace. Déterminons la matrice de
passage de B1 à B2.

La première colonne de PB1,B2
contient les coordonnées de R0 dans la base B1.

On cherche donc des réels a, b, c et d tels que R0 = aP0 + bP1 + cP2 + dP3.
On trouve facilement, de tête, R0 = 1× P0 + 0P1 + 0P2 + 0P3.

Cours BCPST2 Page 18 Espace vectoriels



De même on peut trouver de tête :

R1 = −1 +X = −P0 + P1 + 0P2 + 0P3

R2 = 1− 2X +X2 = P0 − 2P1 + P2 + 0P3

R3 = −1 + 3X − 3X2 +X3 = −P0 + 3P1 − 3P2 + P3

On en déduit que PB1,B2
=







1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1







.

Exemple 24 :

On considère les vecteurs suivants :

u = (1, 1, 0) v = (0, 1, 1) w = (1, 0, 1)

x = (1, 1, 1) y = (2, 1, 1) z = (0, 1, 0).

On admet que B1 = (u, v, w) et B2 = (x, y, z) sont deux bases de R
3. Déterminons la matrice de

passage de B1 à B2.
On a :

x =
1

2
u+

1

2
v +

1

2
w y = u+ w z =

1

2
u+

1

2
v − 1

2
w.

Pour trouver les coefficients devant u, v et w deux méthodes : soit vous les trouvez de tête, soit vous
cherchez a, b et c tels que x = au+ bv + cw, puis pour y et enfin pour z.

Donc PB1,B2
=









1

2
1

1

2
1

2
0

1

2
1

2
1 −1

2









.

Propriété 14
Soit B et B

′ deux bases de E. Alors PB,B′ est une matrice inversible et P−1

B,B′ = PB′,B

Théorème 10 : Formule de changement de base pour les coordonnées d’un vecteur
On considère B et B

′ deux bases de l’espace vectoriel E et P la matrice de passage de B à B
′.

Pour tout −→u ∈ E, on a :
MatB(−→u ) = P ×MatB′(−→u )

6 Rang d’une famille de vecteurs

Définition 12
Soit (−→u1, . . . ,

−→un) une famille de vecteurs d’un espace vectoriel E. On appelle rang de cette famille,
et on note rg(−→u1, . . . ,

−→un), la dimension de l’espace vectoriel F = Vect(−→u1, . . . ,
−→un).

Propriété 15
Soit (−→u1, . . . ,

−→un) une famille de vecteurs d’un espace vectoriel E de dimension finie et soit B une base
de E.
Le rang de la famille (−→u1, . . . ,

−→un) est égal au rang de la matrice des coordonnées de cette famille dans
la base B.
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Ce que je dois savoir faire :
Je dois savoir déterminer le rang d’une famille de vecteurs. Deux méthodes ici :

— On peut poser F = Vect(−→u1, . . . ,
−→un) et calculer la dimension de F .

— Dans un espace de dimension finie, on peut déterminer le rang de la matrice des coordonnées
de la famille (−→u1, . . . ,

−→un) dans une base.

Exemple 25 :

On pose P = 2X + 1, Q = X2 + 1 et R = 2X2 + 2X + 3.
Quel est le rang de la famille (P,Q,R) de R[X ] ?

— Méthode 1 : On pose F = Vect(P,Q,R). Nous devons donc calculer la dimension de F et le seul
moyen de calculer cette dimension est de trouver une base de F .
Par définition de F , la famille (P,Q,R) est une famille génératrice de F .
Cette famille est-elle libre ?
On voit que R = 2Q + P donc la famille (P,Q,R) est liée. (Si on ne « voit » pas, on peut toujours
chercher tous les réels a, b et c tels que : aP + bQ + cR = 0.)
Comme R est une combinaison linéaire de (P,Q), on a F = Vect(P,Q).
La famille (P,Q) est donc génératrice de F . De plus c’est une famille de polynômes échelonnée en
degrés donc cette famille est libre.
Ainsi (P,Q) est une base de F , donc dim(F ) = 2 et donc rg(P,Q,R) = 2.

— Méthode 2 :
Notons Bc = (1, X,X2) la base canonique de R2[X ].

On a alors MatBc
(P,Q,R) =





1 1 3
2 0 2
0 1 2



. Calculons le rang de cette matrice :

rg









1 1 3
2 0 2
0 1 2







 = rg









1 1 3
0 −2 −4
0 1 2







 L2 ← L2 − 2L1

= rg









1 1 3
0 −2 −4
0 0 0







 L3 ← 2L3 + L2

= 2

On a donc rg(P,Q,R) = rg (MatBc
(P,Q,R)) = 2.

Propriété 16
Soit F une famille de vecteurs d’un espace vectoriel E.

— F est libre si, et seulement si, rg(F ) = card(F ).
— Si E est de dimension finie alors F est une base de E si, et seulement si, rg(F ) = card(F ) =

dim(E).

Remarque :

C’est tout simplement une reformulation de la propriété 13.
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