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Polynômes à coefficients réels ou complexes
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Dans tout ce chapitre K désigne R ou C.

I Généralités sur les polynômes

1 Ensemble des polynômes à coefficients réels ou complexes

Définition 1

— On appelle polynôme à coefficients réels toute fonction de la forme :

P : R −→ R

x 7−→

n
∑

i=0

aix
i

où n est un entier naturel fixé et a0, . . ., an sont n + 1 nombres réels fixés.
Les réels a0, . . ., an s’appellent les coefficients du polynôme.

— On appelle polynôme à coefficients complexes toute fonction de la forme :

P : C −→ C

x 7−→
n

∑

i=0

aix
i

où n est un entier naturel fixé et a0, . . ., an sont n + 1 nombres complexes fixés.
Les complexes a0, . . ., an s’appellent les coefficients du polynôme.

Exemples 1 :

— La fonction
R −→ R

x 7−→ x5 − 4x2 + 3
est un polynôme à coefficients réels (on peut aussi dire polynôme

réel).

— La fonction
C −→ C

x 7−→ x6 − ix3 + 2i + 1
est un polynôme à coefficients complexes (on peut aussi dire

polynôme complexe).

— La fonction
C −→ C

x 7−→ x2 + 1
est un polynôme à coefficients complexes.

Notation universelle :

On note X le polynôme défini par x 7−→ x.
On utilise la même notation que ce polynôme soit à coefficients réels ou complexes

Remarques :

— Cette notation universelle a pour but de simplifier les notations des polynômes.
— Grâce aux règles d’opérations sur les fonctions on peut remarquer que Xn est la fonction x 7→ xn et

que les règles de calcul avec X prolongent les règles de calcul dans R ou C.
— Cas particulier et abus : la fonction X0 est donc la fonction x 7→ 1. On s’autorise à écrire 1 plutôt

que X0. Il s’agit d’un abus car 1 est un réel et X0 est une fonction, ils ne vivent donc pas dans le
même monde ! Cela donnera alors lieu à des écritures abusives du type 5X2 + 3 qui correspond au
polynôme x 7→ 5x2 + 3 que l’on devrait normalement écrire 5X2 + 3X0.

Exemple 2 :

— Le polynôme défini par
P : R −→ R

x 7−→ 2x+ 1
peut s’écrire P = 2X +X0.

On s’autorise l’abus de notation : P = 2X + 1.

— Le polynôme défini par
C −→ C

x 7−→ x6 − ix3 + 2i + 1
peut s’écrire X6 − iX3 + 2i + 1.
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Notations :

— On note R[X ] l’ensemble de tous les polynômes à coefficients réels.
— On note C[X ] l’ensemble de tous les polynômes à coefficients complexes.

2 Opérations usuelles et premières propriétés

Propriété 1

Soit (P,Q) ∈ K[X ] définis par P =
n

∑

k=0

akX
k et Q =

ℓ
∑

k=0

bkX
k. Soit aussi α ∈ K.

En posant que ak = 0 si k > n et bk = 0 si k > ℓ on a les résultats ci-dessous.

— αP +Q =

max(n,ℓ)
∑

k=0

(αak + bk)X
k. On peut donc affirmer que aP + Q ∈ K[X ].

— P ×Q =

n+ℓ
∑

k=0

ckX
k avec ck =

k
∑

i=0

aibk−i. On peut donc affirmer que P ×Q ∈ K[X ].

— Il est difficile de donner une expression générale simple de P ◦ Q mais on peut affirmer que
P ◦Q ∈ K[X ].

Théorème 1

Soit P =
n

∑

i=0

aiX
i ∈ K[X ]. On a l’équivalence :

P = 0 ⇔ ∀i ∈ J0;nK, ai = 0.

En d’autres termes, un polynôme est nul si, et seulement si, tous ses coefficients sont nuls.

Corollaire 1

Deux polynômes sont égaux si, et seulement si, leurs coefficients sont égaux.

Exemple 3 :

Déterminons les réels a, b, c, d et e tels que X5 + 1 = (X + 1)(aX4 + bX3 + cX2 + dX + e).
On commence par remarquer que :

(X + 1)(aX4 + bX3 + cX2 + dX + e) = aX5 + (a+ b)X4 + (b+ c)X3 + (c+ d)X2 + (d+ e)X + e.

On en déduit donc que :

X5 + 1 = (X + 1)(aX4 + bX3 + cX2 + dX + e) ⇔































1 = a
0 = a+ b
0 = b+ c
0 = c+ d
0 = d+ e
1 = e

⇔























a = 1
b = −1
c = 1
d = −1
e = 1.

.
En conclusion, X5 + 1 = (X + 1)(X4 −X3 +X2 −X + 1).

Propriété 2

Soient P et Q deux polynômes à coefficients réels ou complexes. On a l’équivalence :

P ×Q = 0 ⇐⇒ P = 0 ou Q = 0.
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3 Degré d’un polynôme

Théorème - définition 2

Soit P ∈ K[X ] \ {0}. Alors il existe un unique entier naturel n tel que :



















P =

n
∑

i=0

aiX
i

avec (a0, . . . , an) ∈ K
n+1

et an 6= 0.

Cet entier naturel n s’appelle le degré du polynôme P . On note n = deg(P ).
Le réel ou complexe an s’appelle le coefficient dominant du polynôme P .
Par convention, deg(0) = −∞.

Exemples 4 :

— Soit P = 3X6 + 2X. deg(P ) = 6.
— Soient a, b et c trois complexes et P = aX2 + bX + c. Alors, sans information supplémentaire, on

peut juste affirmer que deg(P ) 6 2.

Définition 2

On dit que P est un polynôme unitaire si, et seulement si, le coefficient dominant de P est égal à 1.

Propriété 3

Soient P et Q deux polynômes non nuls à coefficients réels ou complexes.
— Si deg(P ) 6= deg(Q), deg(P +Q) = max(deg(P ), deg(Q)).
— Si deg(P ) = deg(Q), deg(P +Q) 6 deg(P ).
— deg(P ×Q) = deg(P ) + deg(Q).
— Si λ ∈ K

∗, deg(λP ) = deg(P ).

Démonstration :

Dans toute cette démonstration on note n = deg(P ) et ℓ = deg(Q). On note de plus P =
n

∑

k=0

akX
k et

Q =

ℓ
∑

k=0

bkX
k. Comme n et ℓ désignent les degrés respectifs de P et Q on sait que an 6= 0 et bℓ 6= 0.

— Supposons par exemple que n < ℓ.

On pose alors an+1 = . . . = aℓ = 0. On peut alors écrire P =

ℓ
∑

k=0

akX
k.

On en déduit que P +Q =
ℓ

∑

k=0

(ak + bk)X
k. De plus aℓ + bℓ = bℓ 6= 0.

Donc deg(P +Q) = ℓ = max(deg(P ), deg(Q)).
On raisonne de même si ℓ < n en posant bℓ+1 = . . . = bn = 0.

— Supposons que n = ℓ. On a alors Q =
n

∑

k=0

bkX
k avec bn 6= 0.

On en déduit que P +Q =
n

∑

k=0

(ak + bk)X
k. Mais comme on ne sait pas si an + bn est nul ou non, on

peut juste dire que deg(P +Q) 6 n.

— On a vu que P × Q =

n+ℓ
∑

k=0

ckX
k avec ck =

k
∑

i=0

aibk−i, en posant ai = 0 si i > deg(P ) et bi = 0 si

Cours BCPST2 Page 4 Polynômes



i > deg(Q).

On a donc cn+ℓ =

n+ℓ
∑

i=0

aibn+ℓ−i = anbℓ car si i < n, alors n + ℓ− i > ℓ et donc bn+ℓ−i = 0 et si i > n

alors ai = 0.
Comme an 6= 0 et bℓ 6= 0 on a cn+ℓ 6= 0 et donc deg(P ×Q) = n+ ℓ = deg(P ) + deg(Q).

— Soit λ ∈ K
∗. Alors λP =

n
∑

k=0

λakX
k et λan 6= 0 car λ 6= 0 et an 6= 0. Donc deg(λP ) = n = deg(P ).

✷

Définition 3

Soit n un entier naturel.
— L’ensemble des polynômes à coefficients réels de degré inférieur ou égal à n est noté Rn[X ] :

Rn[X ] = {P ∈ R[X ] / deg(P ) 6 n} .

— L’ensemble des polynômes à coefficients complexes de degré inférieur ou égal à n est noté Cn[X ] :

Cn[X ] = {P ∈ C[X ] / deg(P ) 6 n} .

Exemples 5 :

X2 + 3X ∈ R2[X ] et X2 + 3iX ∈ C5[X ].

Remarques :

— K0[X ] est l’ensemble des polynômes constants.
— ATTENTION tous les polynômes de Kn[X ] ne sont pas forcément de degré exactement n. Par

exemple, le polynôme nul appartient à Kn[X ] quelle que soit la valeur de n.

Propriété 4

Soient n et k deux entiers naturels. Si n 6 k alors Kn[X ] ⊂ Kk[X ].

II Racines d’un polynôme

1 Définition et premières propriétés

Définition 4

Soit P ∈ K[X ] et α ∈ K.
On dit que α est une racine de P si, et seulement si, P (α) = 0.

Théorème 3 : Théorème de d’Alembert-Gauss

Tout polynôme à coefficients complexes et non constant admet au moins une racine.

Remarque :

Admis en BCPST

Propriété 5

Soit P un polynôme à coefficients réels de degré impair. Alors P admet au moins une racine réelle.

Remarque :

Vous référer à votre cours de sup pour une démonstration.

Propriété 6

Soit P un polynôme à coefficients réels.
Si α ∈ C est une racine de P alors α est aussi une racine de P .
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Exemple 6 :

Soit P = X8 +X6 +X4 − 3X3 + 3 et j le nombre complexe usuel j = e
2iπ

3 .

1. Montrer que j est une racine de P .

2. Sans calculs supplémentaires, déterminer une autre racine de P .

1. On rappelle que le complexe j vérifie les propriétés suivantes (à retenir) :

j3 = 1, j2 + j + 1 = 0, j = j2.

On a donc P (j) = j8 + j6 + j4 − 3j3 + 3 = j2 + 1 + j− 3 + 3 = 0.

j est donc bien une racine de P .

2. Comme P ∈ R[X ], on peut affirmer que j = j2 est une autre racine de P .

2 Factorisation des polynômes

a Caractérisation de la notion de racine par la factorisation

Théorème 4 : Caractérisation de la notion de racine par la factorisation

Soit P ∈ K[X ] et α ∈ K.
α est une racine de P si, et seulement s’il existe Q ∈ K[X ] tel que P = (X − α)×Q.

Remarques :

— Lorsque P = (X − α)Q on dit que X − α divise P .
— Vous avez fait la démonstration en sup dans le cas des polynômes réels, le principe est exactement

le même pour les polynômes complexes.

Corollaire 2

Soit P ∈ K[X ] et (α1, . . . , αp) ∈ K
p tels que ∀i 6= j, αi 6= αj .

α1, α2, . . ., et αp sont des racines de P si, et seulement s’il existe Q ∈ K[X ] tel que
P = (X − α1)(X − α2) . . . (X − αp)×Q.

Démonstration :

⇐= Supposons que P = (X − α1)(X − α2) . . . (X − αp)×Q. Alors il est évident que P (αi) = 0 et donc
α1, . . ., αp sont des racines de P .

=⇒ Montrons par récurrence que la propriété P(p) : « si α1, α2, . . ., et αp sont des racines distinctes de
P alors il existe Q ∈ K[X ] tel que P = (X − α1)(X − α2) . . . (X − αp) × Q » est vraie pour tout
p ∈ N

∗.
La propriété P(1) découle directement du théorème précédent.
Supposons maintenant que P(p) est vraie pour un entier p non nul fixé.
Supposons que α1, α2, . . ., et αp+1 sont des racines distinctes de P .
Comme αp+1 est une racine de P , d’après le théorème précédente, il existe un polynôme R tel que
P = (X − αp+1)× R.
Pour i ∈ J1; pK, on a P (αi) = 0 donc (αi − αp+1)R(αi) = 0.
Or les αi sont distincts donc αi − αp+1 6= 0. On en déduit que R(αi) = 0, c’est-à-dire que α1, α2,
. . .et αp sont des racines de R.
D’après l’hypothèse de récurrence, il existe Q ∈ K[X ] tel que R = (X−α1)(X−α2) . . . (X−αp)×Q.
On en déduit que P = (X − αp+1)(X − α1)(X − α2) . . . (X − αp)×Q.
P(p+ 1) est donc vraie.
D’après le principe de récurrence on a bien montré que si α1, α2, . . ., et αp sont des racines distinctes
de P alors il existe Q ∈ K[X ] tel que P = (X − α1)(X − α2) . . . (X − αp)×Q.

✷
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Propriété 7

Soit P ∈ K[X ] tel que P 6= 0.
Alors {racines de P} est un ensemble fini et card({racines de P}) 6 deg(P ).

Démonstration :

Supposons que card({racines de P}) > deg(P ) ou que P admet une infinité de racines. Notons n =
deg(P ).

Il est donc possible de choisir au moins n + 1 réels α1, α2, . . ., et αn+1 qui sont des racines distinctes
de P .

D’après le corollaire 2, il existe donc Q ∈ K[X ] tel que P = (X − α1)(X − α2) . . . (X − αn+1)×Q.
Comme P 6= 0, on a Q 6= 0.

On a donc, d’après les propriétés des degrés, deg(P ) =
n+1
∑

k=1

deg(X−αk)+deg(Q) = n+1+deg(Q) > n,

ce qui est absurde. Donc {racines de P} est un ensemble fini et card({racines de P}) 6 deg(P ).

✷

Corollaire 3

Soit P ∈ K[X ]. Si P ∈ Kn[X ] et {racines de P} est un ensemble infini ou card({racines de P}) > n+1,
alors P est le polynôme nul.

Démonstration :

Soit P ∈ Kn[X ]. On vient de montrer que si P 6= 0 alors {racines de P} est un ensemble fini et
card({racines de P}) 6 deg(P ).

La contraposée de cette affirmation s’écrit :

Si {racines de P} est un ensemble infini ou card({racines de P}) > deg(P ) alors P = 0.

Comme deg(P ) 6 n, on peut déduire de cette affirmation que si {racines de P} est un ensemble infini
ou card({racines de P}) > n + 1, alors P est le polynôme nul.

✷

Théorème 5 : Un premier théorème de factorisation

Soit P ∈ K[X ] de degré exactement n ∈ N et an ∈ K
∗ son coefficient dominant.

On suppose que P admet n racines distinctes notées α1, . . ., αn.

Alors P = an(X − α1) . . . (X − αn).

Démonstration :

D’après le corollaire 2, il existe Q ∈ K[X ] tel que P = (X − α1) . . . (X − αn)×Q.
D’après les règles d’opérations sur les degrés, on a deg((X − α1) . . . (X − αn)×Q) = n+ deg(Q).
Donc on en déduit que deg(Q) = 0, c’est-à-dire que Q est un polynôme constant. Notons Q = β.
En développant le produit β(X − α1) . . . (X − αn) on remarque que le coefficient de Xn est β. Donc,

P = β(X − α1) . . . (X − αn) implique que β = an.
On a donc bien P = an(X − α1) . . . (X − αn).

✷
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Exemple 7 :

Soit P = (X2 + 1)3 −X6 + 6X3 + 6X − 1.

1. Montrer que i est une racine de P .

2. Calculer P (−2).

3. Factoriser au maximum P dans C[X ] et dans R[X ].

1. P (i) = (i2 + 1)3 − i6 + 6i3 + 6i− 1 = 03 + 1− 6i + 6i− 1 = 0.

Donc i est bien une racine de P .

2. P (−2) = 53 − 26 − 6× 23 − 6× 2− 1 = 125− 64− 48− 12− 1 = 0.

3. Comme P est visiblement un polynôme à coefficients réels, on peut déduire de la question précédente
que −i est aussi une racine de P .

On connait donc 3 racines de P . Il est intéressant de s’intéresser au degré de P pour savoir combien
de racines « il nous manque ».

Pour déterminer le degré de P nous sommes ici obligés de l’écrire sous sa forme développée car les
règles d’opération sur les degré ne nous permettent pas ici de conclure avec la forme donnée par
l’énoncé.

On obtient, après avoir développé : P = 3X4 + 6X2 + 3X2 + 6X. P est donc un polynôme de degré
4 et de coefficient dominant 3.

Et sur cette écriture on voit aussi très vite que P (0) = 0.

Ainsi, i, −i, 0 et −2 sont des racines de P et ce sont les seules car P est de degré 4.

On en déduit la factorisation de P dans C[X ] :

P = 3X(X + 2)(X − i)(X + i).

Pour obtenir la factorisation dans R[X ], il suffit de développer les facteurs faisant intervenir les
racines complexes conjuguées. On obtient :

P = 3X(X + 2)(X2 + 1).

b Multiplicité d’une racine

Théorème - définition 6

Soit P ∈ K[X ] tel que P 6= 0 et α ∈ K une racine de P .

Alors il existe un unique k ∈ N
∗ tel que

{

P = (X − α)kQ avec Q ∈ K[X ]
Q(α) 6= 0.

k s’appelle l’ordre de multiplicité de α.

Remarques :

— On peut aussi dire multiplicité de α ou encore ordre de α.
— Lorsque l’ordre de multiplicité de α est égal à 1 on dit que α est une racine simple et lorsque l’ordre

de multiplicité de α est supérieur ou égal à deux on dit que α est une racine multiple.

Exemple 8 :

Soit P = X3 + iX2 +X + i. Montrons que −i est une racine de multiplicité égale à 2.
On a P (−i) = i− i− i + i = 0 donc −i est bien une racine de P .
On a alors P = (X + i)(X2 + 1). −i est encore racine de X2 + 1.
On peut donc écrire P = (X + i)2(X − i). −i n’est pas une racine de X − i donc on peut conclure que

−i est une racine de P d’ordre de multiplicité égale à 2.
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Propriété 8

Soit P ∈ R[X ] tel que P 6= 0 et α ∈ R ou C.
α est une racine de P de multiplicité supérieure ou égale à deux si, et seulement si, P (α) = 0 et
P ′(α) = 0.

Démonstration :

On ne démontre ici que le cas où α ∈ R.
=⇒ Supposons que α est une racine de P de multiplicité supérieure ou égale à 2. Il existe alors Q ∈ R[X ]

tel que P = (X − α)2Q. (Attention, on ne sait pas ici si α est encore racine de Q.)
On a évidemment P (α) = 0 et P ′ = 2(X − α)Q+ (X − α)2Q′, donc P ′(α) = 0.

⇐= Comme P (α) = 0, α est une racine de P donc il existe Q ∈ R[X ] tel que P = (X − α)Q.
On a donc P ′ = Q + (X − α)Q′. Ainsi, P ′(α) = 0 ⇒ Q(α) = 0. Donc il existe R ∈ R[X ] tel que
Q = (X − α)R.
Ainsi, P = (X − α)Q = (X − α)2R. α est d’ordre de multiplicité supérieur ou égal à 2.

✷

Remarque :

Cette propriété est énoncée ici uniquement pour les polynômes à coefficients réels car la dérivation des
fonctions complexes n’est pas au programme de BCPST.

Propriété 9

Soit P ∈ K[X ] tel que P 6= 0 et α1, . . ., αp des racines distinctes de P .
On note mi la multiplicité de la racine αi. Alors m1 +m2 + . . .+mp 6 deg(P ).

Propriété 10

Soit P un polynôme à coefficients réels.
Si α ∈ C est une racine de P alors α est aussi une racine de P de même ordre de multiplicité que α.

c Factorisation d’un polynôme dans C[X ]

Théorème 7 : Factorisation dans C[X ]
Soit P ∈ C[X ].
On note A le coefficient dominant de P , (α1, . . . , αk) ∈ C

k TOUTES les racines distinctes deux à deux
de P et (m1, . . . , mk) ∈ (N∗)k leurs multiplicités respectives.
Alors P = A(X − α1)

m1(X − α2)
m2 . . . (X − αk)

mk .

Remarque :

Le théorème donnant la factorisation des polynômes à coefficients réels dans R[X ] est hors-programme.
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