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Dans tout ce chapitre K désigne R ou C.

I  Généralités sur les polyndémes

1 Ensemble des polynomes a coefficients réels ou complexes

Définition 1
— On appelle polynéme a coefficients réels toute fonction de la forme :

=0
ou n est un entier naturel fixé et aq, ..., a, sont n + 1 nombres réels fixés.
Les réels aq, ..., a, s’appellent les coefficients du polynéme.

— On appelle polynéme a coeflficients complexes toute fonction de la forme :

pP: C — C
n
r —> Zaixi
=0
ou n est un entier naturel fixé et aq, ..., a, sont n + 1 nombres complexes fixés.
Les complexes ay, ..., a, s’appellent les coefficients du polynéme.
Exemples 1 :
— La fonction 2 A 13 est un polynome a coefficients réels (on peut aussi dire polynéme
réel).
— La fonction — CG . 3 . est un polynodme a coefficients complexes (on peut aussi dire
— 0 —ix” + 2141
polynéme complexe).
: — C R :
— La fonction 9 est un polynome a coefficients complexes.
— 2+ 1

Notation universelle :
On note X le polynome défini par x — .
On utilise la méme notation que ce polynéme soit a coefficients réels ou complexes

Remarques :

— Cette notation universelle a pour but de simplifier les notations des polyndmes.

— Gréace aux régles d’opérations sur les fonctions on peut remarquer que X" est la fonction x — z™ et
que les régles de calcul avec X prolongent les régles de calcul dans R ou C.

— Cas particulier et abus : la fonction X° est donc la fonction 2 — 1. On s’autorise a écrire 1 plutot
que X°. Il s’agit d’'un abus car 1 est un réel et X° est une fonction, ils ne vivent donc pas dans le
méme monde! Cela donnera alors lieu a des écritures abusives du type 5X? + 3 qui correspond au
polynéme z — 52 4+ 3 que l'on devrait normalement écrire 5X% + 3X°.

Exemple 2 :

R — R

r — 2x+1
On s’autorise ’abus de notation : P =2X + 1.
— C

A A . C 9, 6 - v3 .
— Le polynoéme défini par N T S peut s’écrire X° —iX° + 2i + 1.

— Le polynoéme défini par peut s’écrire P = 2X + X°.

Cours BCPST?2 Page 2 Polynomes



Notations :
— On note R[X] 'ensemble de tous les polynomes a coefficients réels.
— On note C[X] 'ensemble de tous les polynémes a coefficients complexes.

2 Opérations usuelles et premiéres propriétés

Propriété 1
n l
Soit (P, Q) € K[X] définis par P = Zaka et Q = Zkak. Soit aussi a € K.

k=0 k=0
En posant que ay =0 si k >n et by =0si k> ¢ on a les résultats ci-dessous.
max(n,f)

— aP+Q = Z (ovay, 4 br) X*. On peut donc affirmer que aP + Q € K[X].

k=0
n+4 k
— PxQ= chXk avec ¢, = Zaibk_i. On peut donc affirmer que P x Q € K[X].
k=0 i=0
— 11 est difficile de donner une expression générale simple de P o () mais on peut affirmer que
Po@ € K[X].

Théoréme 1

Soit P = ZaiXi € K[X]. On a ’équivalence :
i=0

P=0<VYie[0;n], a; =0.

En d’autres termes, un polynéme est nul si, et seulement si, tous ses coefficients sont nuls.

Corollaire 1
Deux polyndémes sont égaux si, et seulement si, leurs coefficients sont égaux.

Ezxemple 3 :
Déterminons les réels a, b, ¢, d et e tels que X° +1 = (X +1)(aX* +bX? +cX? +dX +e).
On commence par remarquer que :

(X +1)(aX* +bX? +cX? +dX +e)=aX’+ (a+b)X* + b+ ) X3+ (c+d)X* +(d+e)X +e.

On en déduit donc que :

(
l=a 0 —
O=a+b :_1
X0+1=(X+1DaX'+bX® +cX?+dX +¢) 8?&12 e c=
B d= -1
O=d+e
1—e e=1.

En conclusion, X° +1= (X + )(X* - X3 + X2 - X +1).

Propriété 2
Soient P et () deux polynomes a coefficients réels ou complexes. On a I’équivalence :

PxQ=0 — P=0 ou Q=0
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3 Degré d’un polynome

Théoréme - définition 2
Soit P € K[X]\ {0}. Alors il existe un unique entier naturel n tel que :

P=> aX'

i=0
avec (ag, ..., a,) € K*!
et a, # 0.

Cet entier naturel n s’appelle le degré du polynéme P. On note n = deg(P).
Le réel ou complexe a,, s’appelle le coefficient dominant du polynéme P.
Par convention, deg(0) = —oc.

Exemples 4 :
— Soit P =3X°%+42X. deg(P) = 6.
— Soient a, b et ¢ trois complexes et P = aX? + bX + c. Alors, sans information supplémentaire, on
peut juste affirmer que deg(P) < 2.

Définition 2
On dit que P est un polynéme unitaire si, et seulement si, le coefficient dominant de P est égal a 1.

Propriété 3
Soient P et () deux polynomes non nuls & coefficients réels ou complexes.
— Si deg(P) # deg(Q), deg(P + Q) — max(deg(P), deg(Q)).
— Si deg(P) = deg(Q), deg(P + Q) < deg(P).
— deg(P x Q) = deg(P) + deg(Q).
— Si A € K*, deg(AP) = deg(P).

Démonstration :

Dans toute cette démonstration on note n = deg(P) et ¢ = deg(Q). On note de plus P = Zaka et

k=0
¢

Q= Zka ¥ Comme n et ¢ désignent les degrés respectifs de P et @ on sait que a, # 0 et by # 0.

k=0
— Supposons par exemple que n < /.
¢

On pose alors a, 11 = ... =a, = 0. On peut alors écrire P = Zaka.

k=0
12

On en déduit que P+ Q = Z(ak + b)) X*. De plus ag + by = by # 0.
k=0

Donc deg(P + Q) = ¢ = max(deg(P), deg(Q)).

On raisonne de méme si £ < n en posant by, 1 =...=b, = 0.

— Supposons que n = £. On a alors ) = Zkak avec b, # 0.
k=0

On en déduit que P+ Q) = Z(ak + bp) X*. Mais comme on ne sait pas si a, + b, est nul ou non, on

k=0
peut juste dire que deg(P + Q) < n.
n+t k
— On avuque Px @ = chXk avec ¢ = Zaibk_i, en posant a; = 0 si i > deg(P) et b; = 0 si
k=0 i=0

Cours BCPST?2 Page 4 Polynomes



i > deg(Q).
n—+~4

On a donc ¢, ¢ = Zaianrg,i = a,by car sii < n, alorsn+ ¢ — 1> { et donc b,y ; =0et sii>n
i=0

alors a; = 0.
Comme a,, # 0 et by # 0 on a ¢, # 0 et donc deg(P x Q) = n + ¢ = deg(P) + deg(Q).

— Soit A € K*. Alors AP = Z)\aka et Aa, # 0 car A # 0 et a, # 0. Donc deg(AP) = n = deg(P).
k=0
O

Définition 3
Soit n un entier naturel.
— L’ensemble des polynomes a coefficients réels de degré inférieur ou égal a n est noté R, [X] :

R,[X] = {P € R[X] / deg(P) < n}.

— L’ensemble des polynomes a coefficients complexes de degré inférieur ou égal a n est noté C,[X] :

C,[X] = {P € C[X] / deg(P) < n}.

Exemples 5 :
X2 43X € Ry[X] et X%+ 3iX € C5[X].

Remarques :
— K[ X] est Pensemble des polyndmes constants.
— ATTENTION tous les polynomes de K,[X] ne sont pas forcément de degré exactement n. Par
exemple, le polynéme nul appartient a K,[X] quelle que soit la valeur de n.

Propriété 4
Soient n et k deux entiers naturels. Si n < k alors K,,[X] € K;[X].

I Racines d’un polyndme

1 Définition et premiéres propriétés

Définition 4
Soit P € K[X] et a € K.
On dit que « est une racine de P si, et seulement si, P(a) = 0.

Théoréme 3 : Théoréme de d’Alembert-Gauss
Tout polynéme a coefficients complexes et non constant admet au moins une racine.

Remarque :
Admis en BCPST
Propriété 5
Soit P un polynome a coefficients réels de degré impair. Alors P admet au moins une racine réelle.

Remarque :
Vous référer a votre cours de sup pour une démonstration.

Propriété 6
Soit P un polynome a coefficients réels.
Si o € C est une racine de P alors @& est aussi une racine de P.
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Exemple 6 :

i

Soit P = X® 4+ X%+ X% —3X® 4+ 3 et j le nombre complexe usuel j = e’
1. Montrer que j est une racine de P.

2. Sans calculs supplémentaires, déterminer une autre racine de P.

1. On rappelle que le complexe j vérifie les propriétés suivantes (a retenir) :
P#=1, P4+j+1=0 j=j

On a donc P(j) = +j*+j* -3 +3=7+14+j-3+3=0.
j est donc bien une racine de P.

2. Comme P € R[X], on peut affirmer que j = j* est une autre racine de P.

2 Factorisation des polynéomes

a Caractérisation de la notion de racine par la factorisation

Théoréme 4 : Caractérisation de la notion de racine par la factorisation
Soit P € K[X] et a € K.
« est une racine de P si, et seulement s'il existe @ € K[X] tel que P = (X — a) X Q.

Remarques :
— Lorsque P = (X — a)Q on dit que X — « divise P.
— Vous avez fait la démonstration en sup dans le cas des polyndémes réels, le principe est exactement
le méme pour les polynémes complexes.

Corollaire 2

Soit P € K[X] et (aq,...,q,) € KP tels que Vi # j, a; # «;.

ay, g, ..., et «, sont des racines de P si, et seulement s’il existe @) € K[X] tel que
P=(X—-o)(X—a)...(X —a,) X Q.

Démonstration :

<= Supposons que P = (X —a1)(X —ag)... (X —a,) x Q. Alors il est évident que P(«;) =0 et donc

aq, ..., oy sont des racines de P.

= Montrons par récurrence que la propriété Z(p) : «si ay, as, ..., et a, sont des racines distinctes de
P alors il existe @ € K[X] tel que P = (X — aq)(X —ag) ... (X — ap) X @ » est vraie pour tout
p € N”.

La propriété & (1) découle directement du théoréme précédent.

Supposons maintenant que &?(p) est vraie pour un entier p non nul fixé.

Supposons que o, o, ..., et a,yq sont des racines distinctes de P.

Comme a7 est une racine de P, d’aprés le théoréme précédente, il existe un polynoéme R tel que
P=(X—ap1)xR.

Pour i € [1;p], on a P(a;) = 0 donc (o — apt1)R(a;) = 0.

Or les a; sont distincts donc o — ayq # 0. On en déduit que R(a;) = 0, c’est-a-dire que aq, aso,
...et oy, sont des racines de R.

D’aprés 'hypothése de récurrence, il existe @ € K[X] tel que R = (X —a;)(X —ag) ... (X —ap) X Q.
On en déduit que P = (X — ap1)(X —a1)(X —ag) ... (X —ap) X Q.

P(p+ 1) est donc vraie.

D’apreés le principe de récurrence on a bien montré que si aq, oo, .. ., et oy, sont des racines distinctes
de P alors il existe @ € K[X] tel que P = (X — ay)(X —ag)... (X —a,) X Q.
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Propriétée 7
Soit P € K[X] tel que P # 0.
Alors {racines de P} est un ensemble fini et card({racines de P}) < deg(P).

Démonstration :

Supposons que card({racines de P}) > deg(P) ou que P admet une infinité de racines. Notons n =
deg(P).
Il est donc possible de choisir au moins n + 1 réels aq, as, ..., et o, qui sont des racines distinctes
de P.
D’apres le corollaire 2, il existe donc @ € K[X] tel que P = (X —ag)(X — aa) ... (X — any1) X Q.
Comme P # 0, on a Q # 0.
n+1
On a donc, d’apreés les propriétés des degrés, deg(P) = Z deg(X —ay)+deg(Q) = n+1+deg(Q) > n,
k=1
ce qui est absurde. Donc {racines de P} est un ensemble fini et card({racines de P}) < deg(P).

Corollaire 3
Soit P € K[X]. Si P € K,,[X] et {racines de P} est un ensemble infini ou card({racines de P}) > n+1,
alors P est le polynéme nul.

Démonstration :

Soit P € K, [X]. On vient de montrer que si P # 0 alors {racines de P} est un ensemble fini et
card({racines de P}) < deg(P).
La contraposée de cette affirmation s’écrit :

Si {racines de P} est un ensemble infini ou card({racines de P}) > deg(P) alors P = 0.

Comme deg(P) < n, on peut déduire de cette affirmation que si {racines de P} est un ensemble infini
ou card({racines de P}) > n + 1, alors P est le polynome nul.

Théoréme 5 : Un premier théoréme de factorisation
Soit P € K[X] de degré exactement n € N et a,, € K* son coefficient dominant.
On suppose que P admet n racines distinctes notées aq, ..., a,.

Alors P =a,(X —a1)... (X — ay).

Démonstration :

D’apres le corollaire 2, il existe @ € K[X] tel que P = (X —ay) ... (X —a,) X Q.

D’aprés les régles d’opérations sur les degrés, on a deg((X — aq) ... (X — a,) X Q) = n + deg(Q).

Donc on en déduit que deg(Q) = 0, c’est-a-dire que @) est un polynéme constant. Notons @ = .

En développant le produit (X — 1) ...(X — a,,) on remarque que le coefficient de X" est 5. Donc,
P=03(X—-a)...(X — a,) implique que 5 = a,.

On a donc bien P = a,(X —aq) ... (X — ay).
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Exemple 7 :

Soit P = (X24+1)> = X® 4+ 6X3+6X — 1.

1. Montrer que i est une racine de P.

. Calculer P(—2).

3. Factoriser au maximum P dans C[X] et dans R[X].

\V]

—_

CPA) = +1)P° —i®+6°+6i—1=0"+1-6i+6i—1=0.
Donc i est bien une racine de P.
P(-2)=5"—-20—6x2"-6x2-1=125-64—48 —12—1=0.

3. Comme P est visiblement un polynéme a coefficients réels, on peut déduire de la question précédente
que —i est aussi une racine de P.

o

On connait donc 3 racines de P. Il est intéressant de s’intéresser au degré de P pour savoir combien
de racines « il nous manque ».

Pour déterminer le degré de P nous sommes ici obligés de 1’écrire sous sa forme développée car les
régles d’opération sur les degré ne nous permettent pas ici de conclure avec la forme donnée par
I’énoncé.

On obtient, aprés avoir développé : P = 3X* 4+ 6X?% 4+ 3X% 4 6X. P est donc un polynéme de degré
4 et de coefficient dominant 3.

Et sur cette écriture on voit aussi trés vite que P(0) = 0.

Ainsi, i, —i, 0 et —2 sont des racines de P et ce sont les seules car P est de degré 4.

On en déduit la factorisation de P dans C[X] :

P=3X(X+2)(X —-i)(X +1).

Pour obtenir la factorisation dans R[X], il suffit de développer les facteurs faisant intervenir les
racines complexes conjuguées. On obtient :

P=3X(X+2)(X*+1).

b  Multiplicité d’une racine

Théoréme - définition 6
Soit P € K[X] tel que P # 0 et o € K une racine de P.

. : P = (X —a)*fQ avec Q € K[X]
Alors il existe un unique k € N* tel que
E E { Q(a) #0.

k s’appelle ’ordre de multiplicité de a.

Remarques :
— On peut aussi dire multiplicité de o ou encore ordre de «.
— Lorsque I'ordre de multiplicité de « est égal a 1 on dit que « est une racine simple et lorsque 'ordre
de multiplicité de a est supérieur ou égal & deux on dit que «a est une racine multiple.

Exemple 8 :

Soit P = X® +iX? 4+ X +i. Montrons que —i est une racine de multiplicité égale & 2.

Ona P(—i)=i—i—1i+1i= 0 donc —i est bien une racine de P.

On a alors P = (X +1)(X? 4 1). —i est encore racine de X2 + 1.

On peut donc écrire P = (X +1)%(X —i). —i n’est pas une racine de X — i donc on peut conclure que
—i est une racine de P d’ordre de multiplicité égale a 2.
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Propriété 8

Soit P € R[X] tel que P # 0 et a € R ou C.

a est une racine de P de multiplicité supérieure ou égale a deux si, et seulement si, P(a) = 0 et
P'(a) =0.

Démonstration :

On ne démontre ici que le cas ou o € R.
— Supposons que « est une racine de P de multiplicité supérieure ou égale a 2. Il existe alors () € R[X]
tel que P = (X — a)?Q. (Attention, on ne sait pas ici si o est encore racine de (Q).)
On a évidemment P(a) =0 et P’ =2(X — a)Q + (X — a)?’Q’, donc P'(a) = 0.
<= Comme P(a) =0, a est une racine de P donc il existe @ € R[X] tel que P = (X — «)Q.
On a donc P’ = Q + (X — a)Q'. Ainsi, P'(a) = 0 = Q(«a) = 0. Donc il existe R € R[X] tel que
Q= (X—ao)R.
Ainsi, P = (X —a)Q = (X — a)’R. a est d’ordre de multiplicité supérieur ou égal & 2.

Remarque :
Cette propriété est énoncée ici uniquement pour les polynomes a coefficients réels car la dérivation des
fonctions complexes n’est pas au programme de BCPST.

Propriété 9
Soit P € K[X] tel que P # 0 et oy, ..., a, des racines distinctes de P.
On note m; la multiplicité de la racine o;. Alors my + my + ...+ m, < deg(P).

Propriété 10
Soit P un polynome a coefficients réels.
Si a € C est une racine de P alors @ est aussi une racine de P de méme ordre de multiplicité que «.

¢ Factorisation d’un polynéme dans C[X]

Théoréme 7 : Factorisation dans C[X]

Soit P € C[X].
On note A le coefficient dominant de P, (o, ..., qx) € C* TOUTES les racines distinctes deux a deux
de P et (my,...,mg) € (N*)¥ leurs multiplicités respectives.

Alors P = A(X —a1)"™ (X —ag)™ ... (X — ag)™™.

Remarque :
Le théoréme donnant la factorisation des polyndmes a coefficients réels dans R[X] est hors-programme.
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