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I Rappels de vocabulaire

1 Expérience aléatoire

Définition 1
On appelle expérience aléatoire, toute expérience dont le résultat ne peut être déterminé a priori,
c’est-à-dire qui dépend du hasard.

Exemples 1 :

— Si on lance un dé cubique équilibré dont les faces sont numérotées de 1 à 6 et que l’on note le résultat
on effectue une expérience aléatoire.
Dans la suite nous appellerons cette expérience, l’expérience (1).

— Lorsqu’on lance une pièce une infinité de fois de suite, et que l’on note le numéro du lancer où l’on
a obtenu pour la première fois « pile », on réalise aussi une expérience aléatoire.
Dans la suite nous appellerons cette expérience, l’expérience (2).

— Lorsqu’on choisit au hasard un nombre réel compris entre 0 et 2, on réalise une expérience aléatoire.
Dans la suite nous appellerons cette expérience, l’expérience (3).

2 Univers

Définition 2
On appelle univers de l’expérience aléatoire, l’ensemble Ω des issues ou résultats possibles de
l’expérience. Les éléments de Ω se notent souvent ω.

Exemples 2 :

— Dans l’expérience (1), l’univers est Ω = {1, 2, 3, 4, 5, 6}.
— Lorsqu’on lance une pièce une fois et que l’on regarde si elle tombe sur pile ou face, l’univers est

Ω = {pile, face}.
— Si on choisit 5 cartes dans un jeu de 32 cartes, l’univers est l’ensemble de toutes les parties à 5

éléments des 32 cartes. C’est donc l’ensemble des 5-combinaisons de l’ensemble des 32 cartes.

On a alors card(Ω) =

(
32

5

)

= 201 376.

— Si on lance trois fois de suite un dé à 6 faces et que l’on note les trois résultats, on réalise une expé-
rience dont l’univers est Ω = {(x, y, z)/x, y, z ∈ {1, 2, 3, 4, 5, 6}}. Attention, ici l’ordre est important.
Ω est l’ensemble des 3-listes d’éléments de J1; 6K.
On a ici card(Ω) = 63 = 216.

— Si on choisit, au hasard, un mot de la langue française, on réalise une expérience aléatoire dont
l’univers est l’ensemble de tous les mots de la langue française.

Toutes ces expériences ont des univers finis et pouvaient être étudiées en première année.

— On s’intéresse maintenant à l’univers de l’expérience (2).
On lance donc une pièce une infinité de fois et on note le numéro du lancer où on a obtenu pour la
première fois pile. Ce premier pile peut apparaitre à n’importe quel numéro de lancer et il peut aussi
ne jamais apparaitre.
En étant rigoureux, on devrait donc écrire que l’univers de notre expérience est Ω = N

∗ ∪ {jamais}.
Toutefois, on peut démontrer que la probabilité de ne jamais obtenir pile est nulle (cf. plus loin dans
le cours).
Ainsi, pour simplifier les calculs et les notations, on écrira plutôt Ω = N

∗.
Cet abus de notation est souvent utilisé et, en BCPST, on ne demande pas de le justifier à chaque
fois.

— Pour l’expérience (3), l’univers est Ω = [0; 2].
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3 Union, intersection, complémentaire...

Notation : Soit Ω un ensemble. L’ensemble des parties de Ω est noté P(Ω).

Remarque :

Lorsque l’ensemble Ω est fini on a card(P(Ω)) = 2card(Ω). (Résultat vu en première année)

Définition 3
Soit Ω un ensemble et A et B deux parties de Ω (on peut noter (A,B) ∈ P(Ω)2).

— L’union de A et B est : A ∪ B = {x ∈ Ω/x ∈ A ou x ∈ B}.
— L’intersection de A et B est : A ∩ B = {x ∈ Ω/x ∈ A et x ∈ B}.
— Le complémentaire de A est : A = {x ∈ Ω/x 6∈ A}.
— On dit que A et B sont disjoints si, et seulement si, A ∩B = ∅.
— On dit que A est inclus dans B (A ⊂ B) si, et seulement si, ∀x ∈ Ω, x ∈ A ⇒ x ∈ B.

Définition 4
Soit (An)n∈N une suite de parties de Ω. On définit :

+∞⋃

n=0

An = {x ∈ Ω/∃n ∈ N, x ∈ An} et
+∞⋂

n=0

An = {x ∈ Ω/∀n ∈ N, x ∈ An}.

Propriété 1

Soit Ω un ensemble, A ∈ P(Ω) et (Bn)n∈N ∈ (P(Ω))N. On a alors :

A ∪

(
+∞⋂

n=0

Bn

)

=
+∞⋂

n=0

(A ∪ Bn), A ∩

(
+∞⋃

n=0

Bn

)

=
+∞⋃

n=0

(A ∩ Bn),

+∞⋃

n=0

Bn =

+∞⋂

n=0

Bn, et
+∞⋂

n=0

Bn =

+∞⋃

n=0

Bn.

Démonstration :

1. • Soit x ∈ A ∪

(
+∞⋂

n=0

Bn

)

.

On a alors deux possibilité : soit x ∈ A soit x ∈
+∞⋂

n=0

Bn.

→ Si x ∈ A alors pour tout n ∈ N, x ∈ A ∪ Bn et donc x ∈
+∞⋂

n=0

(A ∪ Bn)

→ Si x ∈
+∞⋂

n=0

Bn alors pour tout n ∈ N, x ∈ Bn et donc x ∈ A ∪ Bn. Donc x ∈
+∞⋂

n=0

(A ∪ Bn)

Dans les deux cas x ∈
+∞⋂

n=0

(A ∪ Bn)

On a donc l’inclusion A ∪

(
+∞⋂

n=0

Bn

)

⊂
+∞⋂

n=0

(A ∪ Bn)

• Soit x ∈
+∞⋂

n=0

(A ∪ Bn).

Pour tout n ∈ N on a x ∈ A ∪ Bn.
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On a alors deux possibilités : soit il existe n tel que x 6∈ Bn et alors x ∈ A soit pour tout n ∈ N,
x ∈ Bn.

→ Si x ∈ A alors x ∈ A ∪

(
+∞⋂

n=0

Bn

)

.

→ Si pour tout n ∈ N, x ∈ Bn alors x ∈ A ∪

(
+∞⋂

n=0

Bn

)

.

Dans les deux cas x ∈ A ∪

(
+∞⋂

n=0

Bn

)

.

On a donc l’inclusion
+∞⋂

n=0

(A ∪ Bn) ⊂ A ∪

(
+∞⋂

n=0

Bn

)

• En conclusion A ∪

(
+∞⋂

n=0

Bn

)

=

+∞⋂

n=0

(A ∪ Bn)

On montre de même que : A ∩

(
+∞⋃

n=0

Bn

)

=
+∞⋃

n=0

(A ∩ Bn).

2. • Soit x ∈
+∞⋃

n=0

Bn

On a alors x 6∈
+∞⋃

n=0

Bn et donc pour tout n ∈ N, x 6∈ Bn c’est-à-dire x ∈ Bn

Ainsi x ∈
+∞⋂

n=0

Bn

On a donc l’inclusion
+∞⋃

n=0

Bn ⊂
+∞⋂

n=0

Bn

• Soit x ∈
+∞⋂

n=0

Bn

Alors pour tout n ∈ N, x ∈ Bn donc x 6∈ Bn et donc x 6∈
+∞⋃

n=0

Bn

Ainsi x ∈
+∞⋃

n=0

Bn

On a donc l’inclusion
+∞⋂

n=0

Bn ⊂
+∞⋃

n=0

Bn

• En conclusion
+∞⋃

n=0

Bn =

+∞⋂

n=0

Bn

On montre de même que :
+∞⋂

n=0

Bn =
+∞⋃

n=0

Bn

✷
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II Tribus, événements

Lorsqu’on effectue une expérience aléatoire, certains faits liés à cette expérience peuvent se produire
ou non : en première année on les appelait des événements.

Exemples 3 :

— Dans l’expérience (1), on peut par exemple considérer l’événement « le nombre obtenu est pair ».
Nous noterons A1 cet événement.
L’événement A1 est réalisé lorsque le résultat est 2, 4 ou 6. On écrit alors A1 = {2, 4, 6}.

— Dans l’expérience (2), on note A2 l’événement « le nombre obtenu est pair ».
On a A2 = {2k/k ∈ N

∗}.

Remarque :

Jusqu’à présent, on appelait événement toute partie de Ω. Afin d’étendre tous les concepts des proba-
bilités aux univers infinis nous allons devoir préciser la notion d’événement.

Exemple 4 :

On reprend l’expérience (3). On rappelle que l’expérience consiste à choisir au hasard un réel entre 0
et 2.

Comment pourrait-on définir une probabilité associée à cette expérience ?
Par exemple, pour calculer la probabilité d’avoir un réel entre 0, 5 et 1 une idée pourrait être de calculer

1− 0, 5

2− 0
.

Mais le problème avec cette intuition est par exemple « comment calculer la probabilité d’obtenir un
nombre décimal ? »

Contrairement au cas fini, parmi les parties de Ω, nous allons choisir les parties sur lesquelles nous
définirons ensuite la notion de probabilité.

1 Tribus

Définition 5
Soient Ω un ensemble et T une partie de P(Ω), c’est-à-dire un ensemble de parties de Ω.
On dit que T est une tribu (ou une σ-algèbre) sur Ω si, et seulement si :

1. Ω ∈ T ;

2. Si A ∈ T alors A ∈ T ;

3. Pour toute suite (An)n∈I d’éléments avec I ⊂ N (partie finie ou non) de T ,
⋃

n∈I

An ∈ T .

Les éléments de T sont appelés événements

Exemples 5 :

— P(Ω) est une tribu sur Ω.
— {∅,Ω} est aussi une tribu sur Ω.
— Dans certains cas d’univers infinis (comme par exemple dans le cas de notre choix d’élément de

l’intervalle [0; 2]), il peut être très difficile de décrire toutes les tribus.

Remarque :

En BCPST, aucune question sur les tribus ne doit être posée dans une épreuve de mathématiques.

Propriété 2
Soient Ω un ensemble et T une tribu sur Ω.

1. ∅ ∈ T .

2. Si A et B sont deux événements de T , alors A ∪ B, A ∩B et A \B sont dans T .

3. Si I est une partie finie de N et si pour tout i ∈ I, Ai ∈ T alors
⋂

i∈I

Ai ∈ T .
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Démonstration :

— Une tribu contient Ω et est stable par passage au complémentaire.
Donc ∅ = Ω ∈ T .

— A ∪ B ∈ T est un cas particulier du point 3. de la définition pour une suite de deux éléments.
On utilise maintenant la stabilité par passage au complémentaire et par union :
A et B sont dans T donc A ∪B ∈ T et donc A ∪ B = A ∩ B ∈ T .
A \B = A ∩B donc A \B ∈ T .

— Se démontre par récurrence maintenant que l’on sait que l’intersection de deux éléments de T est
dans T .

✷

Définition 6
Soient Ω un ensemble et T une tribu sur Ω. Le couple (Ω,T ) s’appelle un espace probabilisable.

2 Vocabulaire pour les événements

Définition 7
Soient A et B deux événements associés à une même expérience aléatoire.

— L’événement contraire de A est l’événement « A n’est pas réalisé » (c’est-à-dire non A). Il est
représenté par le complémentaire de A dans Ω que l’on note A.

— L’événement « A et B sont réalisés » est représenté par l’intersection A ∩B.
— L’événement « A ou B est réalisé » est représenté par la réunion A ∪ B.
— On dit que les événements A et B sont disjoints ou incompatibles si A ∩ B = ∅ (c’est-à-dire

qu’ils ne peuvent pas être réalisés simultanément).
— On dit que A implique B si A ⊂ B, c’est-à-dire si la réalisation de A entraine la réalisation de

B.
— Un événement qui est toujours réalisé est appelé un événement certain, il est donc représenté

par l’ensemble Ω.
— Un événement qui n’est jamais réalisé est appelé un événement impossible, il est représenté

par l’ensemble vide ∅.
— Les événements qui sont représentés par un singleton {ω} sont appelés des événements élé-

mentaires.

Définition 8
Soit (Ω,T ) un espace probabilisable. On appelle système complet d’événements de Ω toute famille
(Ai)i∈I (I est une partie de N finie ou non) d’éléments de T telle que

1. Les événements Ai sont deux à deux disjoints : ∀(i, j) ∈ I2 tels que i 6= j, Ai ∩ Aj = ∅.

2. Ω =
⋃

i∈I

Ai

Exemple 6 :

Dans l’expérience (2), on avait Ω = N
∗ (en adoptant l’abus de notation qui consiste à « oublier » le

cas où on obtient jamais pile) .
— On note A l’événement « obtenir un nombre pair », et B l’événement « obtenir un nombre impair ».

Alors (A,B) est un système complet d’événements. On dit aussi que les événements A et B forment
un système complet d’événements.

— La famille infinie d’événements ({1}, {2}, {3}, . . .) = ({n})n∈N∗ est le système complet d’événements
composé des événements élémentaires.
L’événement {n} signifie « obtenir pile pour la première fois au nème lancer ».
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III Espaces probabilisés

1 Espace probabilisé fini (rappels de première année)

Lorsque Ω est fini, on le munira toujours de P(Ω) comme tribu.

Définition 9
Soit Ω un univers fini. On appelle probabilité définie sur (Ω,P(Ω)), toute application P de P(Ω)
dans [0; 1] qui vérifie :

(i) P (Ω) = 1.

(ii) Si A et B sont deux événements disjoints, alors P (A ∪ B) = P (A) + P (B).

Le triplet (Ω,P(Ω), P ) s’appelle un espace probabilisé fini et pour tout événement A, le réel P (A)
s’appelle la probabilité de l’événement A.

Nous allons maintenant étendre cette définition aux cas des univers infinis.

2 Cas général

Définition 10
Soit (Ω,T ) un espace probabilisable. On appelle probabilité sur (Ω,T ) tout application P de T dans
[0; 1] vérifiant :

1. P (Ω) = 1

2. Pour toute suite (Ai)i∈I (I est une partie de N finie ou non) d’événements deux à deux disjoints
on a :

P

(
⋃

i∈I

Ai

)

=
∑

i∈I

P (Ai). axiome de σ − additivité

(Ω,T , P ) est alors appelé espace probabilisé et pour tout événement A, le réel P (A) s’appelle la
probabilité de l’événement A.

Remarques :

— La principale différence par rapport au cas fini est que dans le deuxième point, on peut prendre une
suite infinie d’événements ce qui n’était pas possible dans le cas fini car il n’existe qu’un nombre fini
d’événements.

— Cette définition sous-entend que la série
∑

i∈I

P (Ai) est convergente.

On peut voir rapidement que ceci est bien le cas dès que l’axiome de σ-additivité est supposé vrai
pour une union finie d’événements.
En effet, si on considère une suite (An)n∈N d’événements, la série

∑

P (An) est à termes positifs
donc il suffit de montrer que ses sommes partielles sont majorées pour obtenir la convergence de la
série.

On pose alors Sn =
n∑

k=0

P (Ak). D’après l’axiome de σ-additivité, Sn = P

(
n⋃

k=0

Ak

)

.

Or la fonction P est à valeurs dans [0; 1]. Donc P

(
n⋃

k=0

Ak

)

∈ [0; 1].

La série
∑

P (An) est donc une série à termes positifs dont les sommes partielles sont majorées,
cette série est donc bien convergente.
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3 Un peu de vocabulaire supplémentaire pour les événements

Définition 11
Un événement A ∈ T est dit négligeable (ou quasi-impossible) si, et seulement si, P (A) = 0 et
presque sûr (ou presque certain) si, et seulement si, P (A) = 1.

Remarque :

Attention un événement négligeable n’est pas forcément l’événement impossible ∅ ! !
Et un événement presque sûr n’est pas forcément l’événement certain Ω ! !

Définition 12
Soit (Ω,T ) un espace probabilisable. On appelle système quasi-complet d’événements de Ω toute
famille (Ai)i∈I (I est une partie de N finie ou non) d’éléments de T telle que

1. Les événements Ai sont deux à deux disjoints : ∀(i, j) ∈ I2 tels que i 6= j, Ai ∩ Aj = ∅.

2.
∑

i∈I

P (Ai) = 1.

IV Calculer une probabilité

1 Propriétés de base

Propriété 3
Soit (Ω,T , P ) un espace probabilisé et soient A et B deux événements de T .

1. P (A) = 1− P (A), donc P (∅) = 0

2. Si A ⊂ B alors P (A) 6 P (B)

3. P (A ∪ B) = P (A) + P (B)− P (A ∩B)

Propriété 4
Soit (Ω,T , P ) un espace probabilisé et soit (Ai)i∈I (I partie de N) un système complet d’événements

de T . Alors la série
∑

i∈I

P (Ai) est convergente et :

∑

i∈I

P (Ai) = 1.

Remarques :

— Cela découle directement de l’axiome de σ-additivité et de la définition d’un système complet d’évé-
nements.

— Grâce à cette propriété, on voit qu’un système complet d’événements est aussi un système quasi-
complet d’événements.
La réciproque est FAUSSE ! ! !
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2 Utilisation des événements élémentaires

Propriété 5
Soit (Ω,P(Ω), P ) un espace probabilisé tel que Ω = {ωi/i ∈ N}.

Alors la série
∑

P ({ωi}) est convergente et
+∞∑

i=0

P ({ωi}) = 1.

De plus, pour tout événement A, la série
∑

ω∈A

P ({ω}) est convergente et on a :

P (A) =
∑

ω∈A

P ({ω}).

Remarque :

Cette propriété nous dit que pour calculer la probabilité d’un événement quelconque on peut se ramener
au calcul des probabilités des événements élémentaires.

Propriété 6
Soit Ω un univers tel que Ω = {ωi/i ∈ N}.
On considère une suite réelle (pi)i∈N et on suppose que

— ∀i ∈ N, pi > 0 ;

— la série
∑

pi est convergente et
+∞∑

i=0

pi = 1.

Alors il existe une unique probabilité P sur (Ω,P(Ω)) telle que : ∀i ∈ N, P ({ωi}) = pi.

Conseils méthodologiques :

Cette propriété permet de répondre aux questions du type « Montrer que P définit une probabilité sur
Ω ». Il suffira de vérifier que ∀ω ∈ Ω, P ({ω}) > 0 et que la série

∑

P ({ωn}) est convergente et sa
somme vaut 1.

Exemple 7 :

On considère un générateur de nombres aléatoires qui donne l’entier n ∈ N avec la probabilité

P ({n}) = e−22
n

n!
.

— Vérifions que P définit bien une probabilité sur N.
On remarque tout d’abord que pour tout n ∈ N, P ({n}) > 0.

De plus, la série
∑ 2n

n!
est convergente (série exponentielle), donc la série

∑

P ({n}) est convergente et :

+∞∑

n=0

P ({n}) = e−2
+∞∑

n=0

2n

n!
= e−2 × e2 = 1.

Ainsi, P définit bien une probabilité sur N.
— On souhaite maintenant calculer la probabilité de l’événement B : « obtenir un entier pair ».

On a B = {2k, k ∈ N} =
+∞⋃

k=0

{2k}. Or on sait que la série
∑

P ({2k}) est convergente et :

P (B) =

+∞∑

k=0

P ({2k}) =
+∞∑

k=0

e−2 22k

(2k)!
.

On reconnait ici « presque » la série exponentielle. L’astuce consiste à remarquer que, pour tout x ∈ R :

ex + e−x =

+∞∑

n=0

xn

n!
+

+∞∑

n=0

(−x)n

n!
= 2

+∞∑

k=0

x2k

(2k)!
.

Donc on a P (B) = e−2 ×
e2 + e−2

2
=

1 + e−4

2
.
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Cas des événements élémentaires équiprobables dans un univers fini :

Définition 13
On dit que deux événements sont équiprobables si et seulement s’ils ont la même probabilité.

Propriété 7
On suppose que Ω = {ω1, . . . , ωn} est un univers fini.

Si tous les événements élémentaires sont équiprobables alors nécessairement on a : P ({ωi}) =
1

n
.

On appelle cette probabilité la probabilité uniforme.
On en déduit que pour tout événement A :

P (A) =
∑

i/ωi∈A

P ({ωi}) =
card(A)
card(Ω)

Exemple 8 :

Dans l’expérience (1) comme le dé est équilibré chaque face a une probabilité
1

6
de se produire. Les

événements élémentaires sont donc équiprobables.

Ainsi l’événement A1 : « obtenir un nombre pair » est de probabilité P (A1) =
card(A1)

card(Ω)
=

3

6
=

1

2
.

3 Probabilité conditionnelle

a Définition

Définition 14
Soit (Ω,T , P ) un espace probabilisé et A un événement de probabilité non nulle. Pour tout événement
B, on appelle probabilité conditionnelle de B sachant A le réel :

PA(B) =
P (A ∩B)

P (A)
.

On la note aussi P (B/A).

Théorème 1
Soit (Ω,T , P ) un espace probabilisé et A un événement de probabilité non nulle.
Alors, l’application PA : B 7→ PA(B) est une probabilité sur Ω appelée probabilité conditionnelle
relative à A ou encore probabilité sachant A.

Remarques :

— On peut déduire de la définition P (A ∩B) = P (A)× PA(B).

— Si P (B) 6= 0, on peut aussi écrire PB(A) =
P (B ∩A)

P (B)
et donc P (B ∩ A) = P (B)× PB(A)

— Comme P (A ∩ B) = P (B ∩A) on a P (A)× PA(B) = P (B)× PB(A)
— Le but de vos exercices est de vous faire « jouer » avec toutes ces égalités.
— Comme PA est une probabilité, toutes les propriétés de la définition 10 et de la propriété 3 peuvent

lui être appliquées.
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b Formule des probabilités composées

Théorème 2 : Formule des probabilités composées
Soit (A1, A2, . . . , An) une famille d’événements tels que P (A1 ∩A2 ∩ · · · ∩An−1) 6= 0. Alors on a :

P (A1 ∩A2 ∩ . . . ∩ An−1 ∩ An) = P (A1)× PA1
(A2)× PA1∩A2

(A3)× · · · × PA1∩A2∩···∩An−1
(An).

Remarques :

— La démonstration se fait par récurrence sur n.
— Pour deux événements on retrouve P (A ∩B) = P (A)× PA(B).

c Événements indépendants

Définition 15
On dit que deux événements A et B sont indépendants pour la probabilité P si, et seulement si,

P (A ∩ B) = P (A)× P (B)

Remarque :

Il est très important de comprendre que le mot « indépendant » en mathématiques n’est pas toujours
identique au mot « indépendant » en français. Des hasards de calcul peuvent donner des événements
(dépendants d’un paramètre) indépendants pour certaines valeurs du paramètre mais pas pour d’autres.
(cf. exercices)

Propriété 8
Soit A et B deux événements. Si P (B) 6= 0 alors :

A et B sont indépendants ⇔ PB(A) = P (A).

Définition 16
Soit (A1, . . . , An) une famille de n événements.
On dit que les événements (A1, . . . , An) sont mutuellement indépendants pour la probabilité P

ou tout simplement indépendants pour la probabilité P si, et seulement si :

∀I ⊂ J1;nK, P

(
⋂

i∈I

Ai

)

=
∏

i∈I

P (Ai).

Définition 17
Soit (An)n∈N une suite infinie d’événements.
On dit que les (An)n∈N sont mutuellement indépendants pour la probabilité P ou tout simple-
ment indépendants pour la probabilité P si, et seulement si :

∀I ⊂ N, I partie finie, P

(
⋂

i∈I

Ai

)

=
∏

i∈I

P (Ai).

Remarques :

— Dans un exercice, si l’on vous dit que l’on répète de façon identique une expérience, cela signifie que
les événements liés uniquement à l’expérience numéro n sont indépendants de ceux liés uniquement
à l’expérience numéro p (n 6= p).

— ATTENTION pour une famille de plus de trois événements, l’indépendance deux à deux n’entraine
pas forcément l’indépendance mutuelle.
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d Quelques exemples

Exemple 9 :

On lance deux fois de suite un dé cubique équilibré. On note A l’événement « obtenir 1 au premier
lancer », B l’événement « obtenir 2 au deuxième lancer » et C l’événement « obtenir le même résultat aux
deux lancers ».

— Les événements A et B sont indépendants car les deux lancers sont indépendants.

— L’événement A∩C signifie qu’on a obtenu 1 aux deux lancers donc P (A∩C) =
1

36
et P (A) =

1

6
et

P (C) =
6

36
=

1

6
. Donc P (A ∩ C) = P (A)× P (C).

Donc A et C sont indépendants et, de même, B et C sont indépendants.
Ainsi les événements (A,B,C) sont indépendants deux à deux.
Mais ils ne sont pas mutuellement indépendants car P (A∩B∩C) = P (∅) = 0 et P (A)× P (B)× P (C) 6= 0.

Exemple 10 :

On reprend notre expérience (2). La pièce utilisée a deux fois plus de chance de donner pile que face.
On note :

— B l’événement « ne jamais obtenir pile » ;
— pour n ∈ N

∗, An l’événement « obtenir pile pour la première fois au nième lancer » ;
— pour k ∈ N

∗, Fk l’événement « obtenir face au kème lancer ».

1. Pour n ∈ N
∗, calculer P (An).

2. Calculer P (B).

1. L’événement An signifie que l’on a obtenu n− 1 fois face, puis une fois pile. On a donc :

An = F1 ∩ . . . ∩ Fn−1 ∩ Fn.

Comme les lancers sont indépendants (car tous les lancers sont réalisés dans les mêmes conditions),
les événements (Fk)k∈N∗ sont indépendants. On a donc :

P (An) = P (F1)× . . .× P (Fn−1)× P (Fn).

Comme on a deux fois plus de chance d’obtenir pile que d’obtenir face, on sait donc que P (Fk) =
1

3

et P (Fk) =
2

3
.

Ainsi P (An) =

(
1

3

)n−1

×
2

3
.

2. On peut remarquer que B =
+∞⋃

n=1

An.

De plus les événements (An)n∈N∗ sont deux à deux disjoints car pour tout i 6= j, Ai ∩ Aj = ∅, donc,
d’après l’axiome de σ-additivité :

P

(
+∞⋃

n=1

An

)

=
+∞∑

n=1

P (An).

Ainsi :

P (B) = 1−
+∞∑

n=1

P (An) = 1−
+∞∑

n=1

(
1

3

)n−1

×
2

3
= 1−

2

3
×

1

1− 1
3

︸ ︷︷ ︸

car |1/3|<1

= 0.

L’événement B est négligeable (ou quasi-impossible) mais ATTENTION ce n’est pas l’ensemble vide.
Toutefois, dans beaucoup d’exercices, on travaillera « comme si » B était l’ensemble vide.
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Exemple 11 :

Un joueur lance un dé équilibré à 6 faces. S’il obtient un six, il arrête l’expérience. Sinon, il lance à
nouveau le dé.

On introduit les notations suivantes :
— pour k ∈ N

∗, Sk : « obtenir six au kème lancer » ;
— Pour n ∈ N

∗, Vn : « le joueur obtient pour la première fois un six au nème lancer ».
Calculons P (Vn).

Soit n ∈ N
∗. On a Vn = S1 ∩ . . . ∩ Sn−1 ∩ Sn.

Dans cette expérience, l’énoncé ne nous permet pas d’affirmer que les lancers de dé sont indépendants
car à chaque répétition de l’expérience on ne sait pas quels sont les lancers qui auront lieu. Nous ne pouvons
donc pas affirmer, juste à la lecture de l’énoncé, que les événements (Sk)k∈N∗ sont indépendants.

Grâce à la formule des probabilités composées, on a :

P (Vn) = P
(
S1 ∩ . . . ∩ Sn−1 ∩ Sn

)

= P
(
S1

)
× PS1

(
S2

)
. . .× PS1∩...∩Sn−1

(Sn)

=

(
5

6

)n−1

×
1

6
.

4 Formule des probabilités totales

Convention :
On adopte pour la suite la convention suivante : si P (A) = 0, on décide que P (A)PA(B) = 0.

Théorème 3 : Formule des probabilités totales de sup !
Soit n ∈ N

∗ et (A1, A2, . . . , An) un système complet d’événements. Alors pour tout événement B on a :

P (B) = P (A1 ∩ B) + P (A2 ∩ B) + . . .+ P (An ∩ B) =
n∑

k=1

P (Ak ∩ B) version 1

= P (A1)PA1
(B) + P (A2)PA2

(B) + . . .+ P (An)PAn
(B) =

n∑

k=1

P (Ak)PAk
(B). version 2

Remarque :

En exercice, pour gagner du temps, il sera bon de commencer directement avec la « bonne » version !

Théorème 4 : Formule des probabilités totales de spé !
Soit (An)n∈N un système complet d’événements. Alors pour tout événement B, la série

∑

P (An ∩B)
est convergente et on a :

P (B) =
+∞∑

n=0

P (An ∩ B) version 1

=
+∞∑

n=0

P (An)PAn
(B). version 2
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Théorème 5 : Extension de la formule des probabilités totales
Soit (An)n∈N un système quasi-complet d’événements. Alors pour tout événement B, les séries
∑

P (An ∩ B) et
∑

P (An)PAn
(B) sont convergentes et on a :

P (B) =

+∞∑

n=0

P (An ∩ B) version 1

=
+∞∑

n=0

P (An)PAn
(B). version 2

Moyen mnémotechnique :

Si ( 1 , 2 , 3 , . . .) est un système complet ou quasi-complet d’événements alors :

P (
✿✿✿

) = P ( 1 )P
1
(

✿✿✿

) + P ( 2 )P
2
(

✿✿✿

) + P ( 3 )P
3
(

✿✿✿

) + . . .

ou P (
✿✿✿

) = P ( 1 ∩
✿✿✿

) + P ( 2 ∩
✿✿✿

) + P ( 3 ∩
✿✿✿

) + . . .

Conseils méthodologiques :

La formule des probabilités totales est très présente dans les exercices de probabilités. Il est donc
indispensable de la connaitre parfaitement.
En particulier, la formule des probabilités totales permet, dans des exercices faisant intervenir des
expériences qui se répètent, d’obtenir une relation de récurrence entre la valeur d’une probabilité à
l’expérience n et à l’expérience n− 1.

Exemple 12 :

On dispose de deux pièces : la pièce A donne face avec la probabilité
1

2
et la pièce B donne face avec

la probabilité
2

3
.

On choisit une des pièces au hasard. On la lance. Si on obtient face, on conserve la pièce que l’on vient
de lancer, sinon on change de pièce. On effectue ainsi une suite de lancers.

On admet l’existence d’un espace probabilisé (Ω,T , P ) permettant l’étude de cette expérience.
On note An l’événement « jouer avec la pièce A au nième lancer ».
Le but est de calculer P (An).
Le nième lancer dépend fortement du résultat obtenu au lancer précédent et donc de la pièce avec

laquelle on a joué. L’idée est donc d’exprimer P (An) en fonction de P (An−1).
Pour cela, utilisons la formule des probabilités totales avec le système complet d’événements (An−1, An−1)

(on a bien An−1 ∩An−1 = ∅ et An−1 ∪ An−1 = Ω).
On a donc, pour n > 2 fixé :

P (An) = P (An−1)× PAn−1
(An) + P (An−1)× PAn−1

(An).

Jouer avec la pièce A au nième lancer sachant que l’on a joué avec la pièce A au lancer précédent

signifie que l’on a obtenu face au n − 1ième lancer avec la pièce A. On a donc PAn−1
(An) =

1

2
. De même,

PAn−1
(An) =

1

3
.

Donc on obtient : P (An) = P (An−1)×
1

2
+ (1− P (An−1))×

1

3
=

1

6
P (An−1) +

1

3
.

En posant pn = P (An) pour tout n ∈ N
∗, on obtient la relation de récurrence pn =

1

6
pn−1 +

1

3
.

La suite (pn)n∈N∗ est arithmético-géométrique et vous devez donc savoir exprimer pn en fonction de n.
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Exemple 13 :

Une urne contient un jeton noir. Un joueur lance un dé équilibré à 6 faces. S’il obtient un six, il tire
un jeton dans l’urne. Sinon, il rajoute un jeton rouge dans l’urne et répète la manipulation. On admet
l’existence d’un espace probabilisé (Ω,T , P ) permettant l’étude de cette expérience.

On introduit les notations suivantes :
— Sk : « obtenir six au kème lancer » ;
— Pour n ∈ N

∗, Vn : « le joueur obtient pour la première fois un six au nème lancer » ;
— N : « le jeton tiré est noir ».

On admet que ∀x ∈]− 1; 1[,
+∞∑

n=1

xn

n
= − ln(1− x).

1. Montrer que la famille (Vn)n∈N∗ forme un système quasi-complet d’événements.

2. À l’aide de la formule des probabilités totales, calculer P (N).

1. Nous avons déjà calculé P (Vn) dans l’exemple 11.
Par définition des événements (Vn)n∈N∗ , pour tout (i, j) ∈ (N∗)2 tel que i 6= j, Vi ∩ Vj = ∅. Donc les
événements (Vn)n∈N∗ sont deux à deux disjoints.

De plus
+∞∑

k=1

P (Vn) =
1

6

+∞∑

n=1

(
5

6

)n−1

= 1.

Les événements (Vn)n∈N∗ forment un système quasi-complet d’événements.

2. Les événements (Vn)n∈N forment un système quasi-complet d’événements donc, d’après la formule
des probabilités totales :

P (N) =

+∞∑

n=1

P (Vn)PVn
(N) la série est bien convergente d’après la FPT

=
+∞∑

n=1

1

6

(
5

6

)n−1

×
1

n
exemple 11 et description de l’expérience

=
1

5

+∞∑

n=1

1

n

(
5

6

)n

=
− ln

(
1− 5

6

)

5
=

ln(6)

5

5 Formule de Bayes

Théorème 6 : Formule de Bayes
Si A et B sont deux événements de probabilités non nulles, on a :

PB(A) =
P (A)× PA(B)

P (B)
.

Corollaire 1
Soit (An)n∈N un système quais-complet d’événements de probabilités non nulles. Soient, de plus, A et
B deux événements de probabilités non nulles. On a :

PB(A) =
P (A)PA(B)

+∞∑

n=0

P (An)PAn
(B)

Remarque :

Il n’est pas indispensable de retenir par cœur cette formule car elle découle directement de la formule
de Bayes et de la formule des probabilités totales.
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