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Dans tout ce chapitre, K désigne le corps des scalaires et il sera égal à R ou C. n et p désigneront deux entiers
naturels non nuls.

E et G désignent deux K-espaces vectoriels.

I Généralités

1 Définitions

Définition 1
Soit f une application de E dans G. On dit que f est une application linéaire ou encore un morphisme de
E dans G si, et seulement si :

— ∀(−→u ,−→v ) ∈ E2, f(−→u +−→v ) = f(−→u ) + f(−→v ) ;
— ∀−→u ∈ E et ∀λ ∈ K, f(λ−→u ) = λf(−→u ).

Propriété 1
Soit f une application de E dans G. f est une application linéaire de E dans G si, et seulement si :

∀(−→u ,−→v ) ∈ E2, ∀λ ∈ K, f(−→u + λ−→v ) = f(−→u ) + λf(−→v )

Vocabulaire et notations :

L (E,G) ensemble des applications linéaires de E dans G

endomorphisme de E application linéaire de E dans E

L (E) ensemble des endomorphismes de E

0E,G application nulle de E dans G : ∀−→u ∈ E, 0E,G(
−→u ) =

−→
0 G

idE application identité de E dans E : ∀−→u ∈ E, idE(
−→u ) = −→u

isomorphisme de E dans G application linéaire et bijective de E dans G

E et G sont isomorphes se dit s’il existe un isomorphisme de E dans G

fn (n ∈ N et f ∈ L (E)) f0 = idE et pour n ∈ N
∗, fn = f ◦ f ◦ . . . ◦ f

︸ ︷︷ ︸

n fois

Exemple 1 :

Soit A ∈ Mn(R) fixée et In la matrice identité de Mn(R).
Montrons que l’application g : P 7→ P (0)In + P (1)A est une application linéaire de R[X] dans Mn(R).
Soient Q et R deux polynômes de R[X] et λ ∈ R.
On a g(Q+ λR) = (Q+ λR)(0)In + (Q+ λR)(1)A = Q(0)In +Q(1)A + λ(R(0)In +R(1)A) = g(Q) + λg(R).
Donc g est une application linéaire de R[X] dans Mn(R).

Exemple 2 :

Soit f l’application qui à toute matrice M =

(
a b
c d

)

∈ M2(R) associe la matrice f(M) =
a+ d

2
I2 +

b+ c

2
J

où J =

(
0 1
1 0

)

.

Montrons que f est un endomorphisme de M2(R).
Nous avons ici deux choses à vérifier : tout d’abord que pour la fonction f l’espace de départ et celui d’arrivée

sont les mêmes. Ensuite il faut vérifier que f est bien une application linéaire.
— On remarque tout d’abord que f(M) est une combinaison linéaire de deux matrices de M2(R) donc f(M) ∈

M2(R).
— Soit maintenant K et L deux éléments de M2(R) et soit α un réel.

On doit démontrer que f(K + αL) = f(K) + αf(L).
Pour cela nous sommes obligés de donner des noms aux coefficients des matrices K et L.
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Notons K =

(
k1 k2
k3 k4

)

et L =

(
ℓ1 ℓ2
ℓ3 ℓ4

)

.

On a donc : f(K) + αf(L) =
k1 + k4

2
I2 +

k2 + k3
2

J + α

(
ℓ1 + ℓ4

2
I2 +

ℓ2 + ℓ3
2

J

)

De plus, K + αL =

(
k1 + αℓ1 k2 + αℓ2
k3 + αℓ3 k4 + αℓ4

)

.

Donc f(K + αL) =
k1 + αℓ1 + k4 + αℓ4

2
I2 +

k2 + αℓ2 + k3 + αℓ3
2

J .

Donc on voit bien que f(K + αL) = f(K) + αf(L). f est bien une application linéaire.
Ainsi f est bien un endomorphisme de M2(R).

2 Propriétés

Propriété 2

Soit f ∈ L (E,G). Alors f
(−→
0 E

)

=
−→
0 G.

Démonstration :

f(
−→
0 E) = f(

−→
0 E +

−→
0 E) propriété du vecteur nul

=⇒ f(
−→
0 E) = f(

−→
0 E) + f(

−→
0 E) car f est linéaire

=⇒
−→
0 G = f(

−→
0 E) en ajoutant − f(

−→
0 E) de chaque côté

Donc f
(−→
0 E

)

=
−→
0 G.

✷

Propriété 3
Soient f et g deux éléments de L (E,G) et α ∈ K.
Alors f + αg est une application linéaire de E dans G.

Démonstration :

∀(−→u ,−→v ) ∈ E, ∀λ ∈ K :

(f + αg)(−→u + λ−→v ) = f(−→u + λ−→v ) + αg(−→u + λ−→v ) définition d’une somme de fonctions

= f(−→u ) + λf(−→v ) + αg(−→u ) + αλg(−→v ) car f et g linéaires

= (f + αg)(−→u ) + λ(f + αg)(−→v )

Donc f + αg est une application linéaire.

✷

Propriété 4
Soient E, G et H trois espaces vectoriels.
Si f ∈ L (E,G) et g ∈ L (G,H) alors g ◦ f est une application linéaire de E dans H.

Démonstration :

∀(−→u ,−→v ) ∈ E, ∀λ ∈ K :

(g ◦ f)(−→u + λ−→v ) = g (f(−→u + λ−→v )) définition de la composée

= g (f(−→u ) + λf(−→v )) car f est linéaire

= g (f(−→u )) + λg (f(−→v )) car g est linéaire

= (g ◦ f)(−→u ) + λ(g ◦ f)(−→v )

Donc g ◦ f est une application linéaire.

✷
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Corollaire 1
Soit f ∈ L (E). Pour tout n ∈ N, fn est aussi un endomorphisme de E.

Propriété 5
Soient E, G et H trois espaces vectoriels.
Si f et g appartiennent à L (E,G) et h ∈ L (G,H) alors h ◦ (f + g) = h ◦ f + h ◦ g.

Démonstration :

Pour tout −→u ∈ E :

(h ◦ (f + g))(−→u ) = h ((f + g)(−→u )) définition d’une composée de fonctions

= h (f(−→u ) + g(−→u )) définition d’une somme de fonctions

= h(f(−→u )) + h(g(−→u )) car h est linéaire

= (h ◦ f)(−→u ) + (h ◦ g)(−→u )

= (h ◦ f + h ◦ g) (−→u ) définition d’une somme de fonctions.

Donc h ◦ (f + g) = h ◦ f + h ◦ g.

✷

Propriété 6 : Formule du binôme
Soient f et g deux endomorphismes de E. Si f ◦ g = g ◦ f alors :

∀n ∈ N, (f + g)n =

n∑

k=0

(
n

k

)

fk ◦ gn−k.

Propriété 7

Si f est un isomorphisme de E dans G alors f−1 est un isomorphisme de G dans E.

Démonstration :

Il s’agit ici de montrer que f−1 est une application linéaire car par définition d’une bijection réciproque f−1

est bien une application bijective de G dans E.
∀(−→u ,−→v ) ∈ G, ∀λ ∈ K :

f
(
f−1(−→u ) + λf−1(−→v )

)
= f

(
f−1(−→u )

)
+ λf

(
f−1(−→v )

)
car f est linéaire

= −→u + λ−→v

=⇒ f−1(−→u ) + λf−1(−→v ) = f−1(−→u + λ−→v ) en composant par f−1

Donc f−1 est bien une application linéaire.

✷

II Éléments caractéristiques

1 Image

Définition 2
Soient E et G deux espaces vectoriels et f ∈ L (E,G). On appelle image de l’application linéaire f , et on note
Im(f), l’ensemble suivant :

Im(f) = {f(−→u )/−→u ∈ E}

= {−→w ∈ G/∃−→u ∈ E, tel que −→w = f(−→u )} .
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Remarque :

Les deux égalités sont importantes à connaitre. Suivant le contexte de l’exercice l’une sera plus adaptée que
l’autre.

Propriété 8
Soit f ∈ L (E,G). Im(f) est un sous-espace vectoriel de G.

Démonstration :

— Par définition, Im(f) est un sous-ensemble de G.
— On a vu que

−→
0 G = f(

−→
0 E) donc

−→
0 G ∈ Im(f).

— Soient (−→x ,−→y ) ∈ Im(f)2 et λ ∈ K.
Par définition de l’image, il existe −→u ∈ E et −→v ∈ E tels que −→x = f(−→u ) et −→y = f(−→v ).
Donc −→x + λ−→y = f(−→u ) + λf(−→v ) = f(−→u + λ−→v ), car f est linéaire.
Ainsi, −→x + λ−→y ∈ Im(f).

En conclusion Im(f) est un sous-espace vectoriel de G.

✷

Voici une propriété très utile car elle donne une famille génératrice de Im(f) :

Propriété 9
Soient E un espace vectoriel de dimension finie p, et (−→e 1, · · · ,

−→e p) une base de E. Soient G un espace vectoriel
quelconque et f ∈ L (E,G).
Alors (f(−→e 1), · · · , f(

−→e p)) est une famille génératrice de Im(f), c’est-à-dire :

Im(f) = Vect(f(−→e 1), · · · , f(
−→e p)).

Ce que je dois savoir faire :
Je dois savoir trouver une base et donc la dimension de l’image d’une application linéaire.
Pour trouver une famille génératrice de Im(f) il y a deux méthodes principales :

— Écrire la définition de Im(f), puis par quelques « manipulations » faire apparaitre une famille génératrice.
— Utiliser la propriété 9.
Exemple 3 :

Reprenons la fonction f de l’exemple 2.
On cherche une base et la dimension de Im(f).
Pour cet endomorphisme on peut écrire tout simplement la définition de l’image :

Im(f) = {f(M)/M ∈ M2(R)}

=

{
a+ d

2
I +

b+ c

2
J/(a, b, c, d) ∈ R

4

}

=

{

a×
1

2
I + d×

1

2
I + b×

1

2
J + c×

1

2
J/(a, b, c, d) ∈ R

4

}

= vect

(
1

2
I,

1

2
I,

1

2
J,

1

2
J

)

= vect

(
1

2
I,

1

2
J

)

= vect(I, J)

Donc on voit que la famille (I, J) est génératrice de Im(f).
C’est une famille de deux vecteurs visiblement non proportionnels donc la famille (I, J) est libre.
Donc (I, J) est une base de Im(f) et ainsi dim(Im(f)) = 2.

Exemple 4 :

On considère l’application f qui, à tout élément P de R2[X] associe le polynôme Q tel que :

pour tout x réel : Q (x) = (x− 1)P ′ (x) + P (x)

On admet que f est un endomorphisme de R2[X] et on cherche une base et la dimension de Im(f).
On peut tout d’abord reformuler l’énoncé en écrivant : f(P ) = (X − 1)P ′ + P .

Cours BCPST2 Page 5 Applications linéaires



Voyons ici une autre méthode que celle de l’exemple précédent.
D’après la propriété 9 : en prenant la base canonique de R2[X], (1,X,X2), on sait que (f(1), f(X), f(X2)) est

une famille génératrice de Im(f). Il ne reste plus qu’à vérifier que cette famille est libre. On a :

f(1) = 1 f(X) = 2X − 1 f(X2) = 3X2 − 2X

La famille (1, 2X − 1, 3X2 − 2X) est libre car ce sont des polynômes non nuls de degrés deux à deux distincts.
Donc (1, 2X − 1, 3X2 − 2X) est une base de Im(f) et dim(Im(f)) = 3.

Propriété 10
Soit f ∈ L (E,G). f est surjective si, et seulement si, Im(f) = G

Exemple 5 :

Dans l’exemple précédent, Im(f) ⊂ R2[X] et dim(Im(f)) = 3 = dim(R2[X]).
Donc Im(f) = R2[X] et donc f est surjective.

2 Noyau

Définition 3
Soient E et G deux espaces vectoriels, et f ∈ L (E,G). On appelle noyau de l’application linéaire f , et on
note ker(f), l’ensemble suivant :

ker(f) =
{
−→u ∈ E/f(−→u ) =

−→
0 G

}

.

Propriété 11
ker(f) est un sous-espace vectoriel de E.

Démonstration :

— Par définition, ker(f) est un sous-ensemble de E.
— On a vu que f(

−→
0 E) =

−→
0 G donc

−→
0 E ∈ ker(f).

— Soient (−→x ,−→y ) ∈ ker(f)2 et λ ∈ K. On a

f(−→x + λ−→y ) = f(−→x ) + λf(−→y ) f est linéaire

=
−→
0 G + λ

−→
0 G car −→x et −→y sont dans ker(f)

=
−→
0 G.

Ainsi, −→x + λ−→y ∈ ker(f).
En conclusion ker(f) est un sous-espace vectoriel de E.

✷

Ce que je dois savoir faire :
Je dois savoir déterminer une base, et donc la dimension, du noyau d’une application linéaire :

— Je résous l’équation f(−→u ) = 0.
— J’écris ker(f) =ensemble des solutions.
— Je trouve alors une base de ker(f) (je trouve une famille génératrice puis je regarde si cette famille est libre)
Exemple 6 :

On considère l’endomorphisme de M2(R) défini par f(M) = M + (a+ d)I2 avec M =

(
a b
c d

)

∈ M2(R).

On souhaite déterminer le noyau de f et, si possible, une base et la dimension de ce noyau.
On commence par écrire la définition du noyau : ker(f) = {M ∈ M2(R)/f(M) = 0}.
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On voit donc qu’il nous faut résoudre l’équation f(M) = 0 :

f(M) = 0 ⇔ M + (a+ d)I2 = 0 ⇔

(
a b
c d

)

+ (a+ d)

(
1 0
0 1

)

=

(
0 0
0 0

)

⇔







a+ a+ d = 0
b = 0
c = 0
d+ a+ d = 0

⇔ a = b = c = d = 0

Ainsi ker(f) =

{(
0 0
0 0

)}

. On ne peut pas ici déterminer une base de ker(f).

Théorème 1
Soit f ∈ L (E,G). Alors :

f est injective ⇔ ker(f) = {
−→
0 E}.

Démonstration :

— =⇒ : supposons que f est injective.
Alors

−→
0 G admet au plus un antécédent par f et comme

−→
0 E en est un, il n’y en a pas d’autre.

Ainsi ker(f) = {
−→
0 E}.

— ⇐= : Supposons que ker(f) = {
−→
0 E}.

On a alors, pour tout (−→u ,−→v ) ∈ E :

f(−→u ) = f(−→v ) ⇔ f(−→u )− f(−→v ) =
−→
0 G ⇔ f(−→u −−→v ) =

−→
0 G car f linéaire

On a donc montré que f(−→u ) = f(−→v ) ⇔ −→u − −→v ∈ ker(f). Et comme on a supposé que ker(f) = {
−→
0 E}, on

a :
f(−→u ) = f(−→v ) ⇔ −→u −−→v =

−→
0 E ⇔ −→u = −→v .

f est donc injective.

✷

Ce que je dois savoir faire :
Si on m’a déjà demandé de répondre à la question « Déterminer le noyau de f », je dois savoir répondre

rapidement à la question « f est-elle injective ? » :
— Si on a montré que ker(f) = {0} alors f est injective.
— Si on a montré que ker(f) contient d’autres éléments que 0 alors f n’est pas injective.

Exemple 7 :

Dans l’exemple précédent, on peut affirmer que f est une application linéaire injective.

3 Rang

Définition 4
On appelle rang d’une application linéaire f ∈ L (E,G), et on note rg(f), la dimension de Im(f) si celle-ci
existe.

Théorème 2 : Théorème du rang
Soit f ∈ L (E,G), avec E espace vectoriel de dimension finie et G espace vectoriel quelconque. Alors
Im(f) est de dimension finie et on a l’égalité suivante :

dim(E) = dim(ker(f)) + dim(Im(f)).

Remarque :

Résultat admis en BCPST.

Conseils méthodologiques : Lorsqu’on connait la dimension du noyau ou de l’image d’une application
linéaire, il faut penser à utiliser le théorème du rang pour déterminer la dimension de l’autre. Cela permet parfois
d’éviter de gros calculs inutiles.
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Exemple 8 :

Reprenons l’exemple 2. On admet que dim(M2(R)) = 4. Déterminons une base du noyau de f .
On a vu, dans l’exemple 3, que dim(Im(f)) = 2. D’après le théorème du rang, on a donc :

dim(M2(R)) = dim(ker(f)) + dim(Im(f)) ⇔ 4 = dim(ker(f)) + 2 ⇔ dim(ker(f)) = 2.

Or on remarque que f

((
1 0
0 −1

))

= 0 et f

((
0 1
−1 0

))

= 0.

La famille

((
1 0
0 −1

)

,

(
0 1
−1 0

))

est une famille visiblement libre (deux matrices non proportionnelles) de

deux vecteurs de ker(f) et on a vu que dim(ker(f)) = 2.

Donc

((
1 0
0 −1

)

,

(
0 1
−1 0

))

est une base de ker(f).

Dans cet exemple le calcul direct n’est pas beaucoup plus long, mais l’idée utilisée ici est à retenir !

Dans toute la suite du chapitre E et G sont deux espaces vectoriels de dimension finie,
dim(E) = p, dim(G) = n, BE = (−→e1 , . . . ,

−→ep ) désigne une base de E et BG = (−→g1 , . . . ,
−→gn)

désigne une base de G.

III Isomorphismes en dimension finie

1 Propriétés

Propriété 12
Soit f ∈ L (E,G).

f est un isomorphisme si, et seulement si, l’image d’une base de E par f est une base de G.

Démonstration :

— =⇒ : supposons que f est un isomorphisme.
Soit BE = (−→e 1, . . . ,

−→e p) une base de E.
On sait alors (propriété 9) que (f(−→e 1), . . . , f(

−→e p)) est une famille génératrice de Im(f). Or f est surjective
donc Im(f) = G.
(f(−→e 1), . . . , f(

−→e p)) est donc une famille génératrice de G.
Montrons que cette famille est aussi libre.
On cherche tous les scalaires (a1, . . . , ap) ∈ K

p tels que :

a1f(
−→e 1) + . . . apf(

−→e p) =
−→
0G

⇔f (a1
−→e 1 + . . . ap

−→e p) =
−→
0G par linéarité de f

⇔f (a1
−→e 1 + . . . ap

−→e p) = f(
−→
0E)

⇔a1
−→e 1 + . . .+ ap

−→e p =
−→
0E car f est injective

⇔a1 = . . . = ap = 0 car la famille BE est libre.

Donc la famille (f(−→e 1), . . . , f(
−→e p)) est libre.

Ainsi (f(−→e 1), . . . , f(
−→e p)) est une base de G.

— ⇐= : On suppose ici que lorsque B est une base de E, f(B) est une base de G.
Or, d’après la propriété 9, f(B) est une famille génératrice de Im(f), on en déduit que f(B) est une base
de Im(f) et donc Im(f) = G et ainsi f est surjective.
Montrons maintenant que f est injective grâce au théorème du rang.
f est une application linéaire et E est de dimension finie donc, d’après le théorème du rang :

dim(E) = dim(Im(f)) + dim(ker(f))

⇔card(B) = card(f(B)) + dim(ker(f))

car B est une base de E et f(B) est une base de Im(f)

⇔0 = dim(ker(f)) car card(B) = card(f(B)).

On a donc dim(ker(f)) = 0, ce qui signifie que ker(f) = {
−→
0 E} et donc que f est injective.

En conclusion, f est bijective et donc c’est un isomorphisme de E dans G.
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✷

Corollaire 2
Si f est un isomorphisme de E dans G alors dim(E) = dim(G).

Remarque :

Découle directement de la propriété précédente.

Théorème 3
Soient E et G deux espaces vectoriels de dimension finie tels que dim(E) = dim(G), et soit f une application
linéaire de E dans G. Alors on a :

f est bijective ⇔ f est injective ⇔ f est surjective

Théorème 4
Tout espace vectoriel de dimension p est isomorphe à K

p.

Démonstration :

Il suffit de considérer l’application linéaire :

f : K
p −→ E

(x1, . . . , xp) 7−→

p
∑

i=1

xi
−→e i

où (−→e 1, . . . ,
−→e p) est une base de E.

On montre facilement que f est injective et comme dim(E) = p = dim(Kp), f est bijective et donc f est un
isomorphisme entre E et K

p.

✷

2 Méthode

Le théorème suivant résume toutes les méthodes, connues pour l’instant, pour montrer qu’une application
linéaire, entre deux espaces de dimension finie, est bijective :

Théorème 5
Soient E et G deux espaces vectoriels de dimension finie et f une application linéaire de E dans G. Alors toutes
les affirmations suivantes sont équivalentes :

(i) f est bijective (autrement dit f est un isomorphisme) ;

(ii) l’image par f d’une base de E est une base de G ;

(iii) f est injective et dim(E) = dim(G) ;

(iv) f est surjective et dim(E) = dim(G)

Exemple 9 :

Soit (e1, e2, e3, e4) la base canonique de R4. On définit l’endomorphisme ϕ de R4 par ϕ(ei) = ei+1 pour 1 6 i 6 3
et ϕ(e4) = e1.

On peut remarquer rapidement que l’image de la base (e1, e2, e3, e4) par ϕ est la famille (e2, e3, e4, e1) qui est
aussi une base de R

4.
Donc comme ϕ transforme une base en une autre base, on peut dire que ϕ est bijectif et donc c’est un

isomorphisme de R
4 dans lui-même.
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Exemple 10 :

Soit ϕ l’application linéaire de M2(C) dans C3[X] définie par

ϕ

((
a b
c d

))

= (a+ b)X3 + (b+ ic)X2 + (ic+ d)X + d− a.

On admet que dim(M2(C)) = 4. Montrons que ϕ est un isomorphisme.
— Déterminons le noyau de ϕ :

ϕ

((
a b
c d

))

= 0 ⇔







a+ b = 0
b+ ic = 0
ic+ d = 0
d− a = 0

⇔







2a = 0
b = a
c = ia
d = a

⇔ a = b = c = d = 0.

Donc ker(ϕ) =

{(
0 0
0 0

)}

. ϕ est donc injective.

— De plus dim(M2(C)) = 4 = dim(C3[X]).
Des deux points précédents nous pouvons déduire que ϕ est bijective et donc ϕ est un isomorphisme de M2(C)

dans C3[X].

IV Applications linéaires et matrices

1 Propriété préliminaire

Propriété 13 : Détermination d’une application linéaire par l’image d’une base
On rappelle que E est un espace vectoriel de dimension finie p, et BE = (−→e1 , . . . ,

−→ep) est une base de E. Dans
cette propriété, G est un espace vectoriel quelconque et (−→u1, . . . ,

−→up) une famille de p vecteurs de G.
Alors il existe une unique application linéaire ϕ de E dans G, telle que ϕ(−→ei ) =

−→ui , pour tout 1 6 i 6 p.

Remarque :

Cette propriété signifie que pour connaitre entièrement une application linéaire sur un espace de dimension
finie il suffit de connaitre les images des éléments d’une base.

Démonstration :
— Unicité :

Supposons qu’il existe deux applications linéaires ϕ et γ de E dans G vérifiant les hypothèses de l’énoncé.

Pour tout −→x ∈ E, il existe (a1, . . . , ap) ∈ K
p tel que −→x =

p
∑

i=1

ap
−→ei .

On a alors, par linéarité de ϕ : ϕ(−→x ) = ϕ

(
p
∑

i=1

ai
−→ei

)

=

p
∑

i=1

aiϕ(
−→ei ) =

p
∑

i=1

ai
−→ui .

Et de même γ(−→x ) =

p
∑

i=1

ai
−→ui . Donc ϕ = γ. Si une telle application existe, elle est unique.

— Existence :

Pour tout −→x ∈ E, on pose ϕ(−→x ) =

p
∑

i=1

ai
−→ui , où MatBE

(−→x ) =






a1
...
ap




. Vérifions que ϕ est bien une application

linéaire de E dans G telle que ϕ(−→ei ) =
−→ui , pour tout 1 6 i 6 p.

D’après sa définition ϕ est bien une application de E dans G.

On considère maintenant (−→x ,−→y ) ∈ E2 et λ ∈ K quelconques. On note MatBE
(−→x ) =






a1
...
ap




 et

MatBE
(−→y ) =






b1
...
bp




. On a alors MatBE

(−→x + λ−→y ) =






a1 + λb1
...

ap + λbp




 et donc, par définition de ϕ :

ϕ(−→x + λ−→y ) =

p
∑

i=1

(ai + λbi)
−→ui =

p
∑

i=1

ai
−→ui + λ

p
∑

i=1

bi
−→ui = ϕ(−→x ) + λϕ(−→y ).
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Ainsi ϕ est bien linéaire.

Enfin, pour tout i ∈ J1; pK, MatBE
(−→e i) =











...
0
1
0
...











, le 1 étant à la ième place.

Donc ϕ(−→ei ) = 0−→u1 + . . .+ 0−−→ui−1 + 1−→ui + 0−−→ui+1 + . . .+ 0−→up = −→ui .

✷

Ce que je dois savoir faire :
Si on me donne uniquement les valeurs des images d’une base de E, je dois savoir calculer la valeur de l’image

de n’importe quel autre vecteur de E.

Exemple 11 :

On considère R2[X] muni de sa base canonique (1,X,X2) ainsi que l’application f ∈ L (R2[X],R2) définie
par :

f(1) = (1, 0) f(X) = (2,−1) f(X2) = (−3, 1)

Calculer f(P ) pour tout P ∈ R2[X].
On considère un polynôme P quelconque de R2[X]. On sait que P = aX2 + bX + c avec (a, b, c) ∈ R

3.
Donc, comme f est une application linéaire :

f(P ) = f(aX2 + bX + c) = af(X2) + bf(X) + cf(1)

= a(−3, 1) + b(2,−1) + c(1, 0) = (−3a+ 2b+ c, a− b).

2 Matrice associée à une application linéaire

Définition 5
Soit f ∈ L (E,G). Pour 1 6 j 6 p, on note (a1,j , . . . , an,j) les coordonnées du vecteur f(−→e j) dans la base BG :

f(−→e j) =

n∑

i=1

ai,j
−→gi

On appelle matrice de l’application linéaire f relativement aux bases BE et BG la matrice
A ∈ Mn,p(K) où ai,j est le scalaire situé sur la ligne i et la colonne j.
La jème colonne de A contient les coordonnées de f(−→e j) dans la base BG.
On note MatBE ,BG

(f) la matrice de f relativement aux bases BE et BG.

Remarques :

— Les coordonnées des f(−→e j) étant uniques, la matrice associée à f dans les bases données est unique.
— Réciproquement à toute matrice de Mn,p(K) il correspond une unique application f ∈ L (E,G) (découle de

la propriété 13).
— La matrice associée à un endomorphisme est une matrice carrée.

Conseils méthodologiques :

Je dois savoir déterminer la matrice d’une application linéaire donnée dans des bases données :
— On commence par bien identifier la base de l’espace de départ (on la notera BE = (e1, . . . , ep) dans ce

conseil méthodologique) et la base de l’espace d’arrivé (on la notera BG = (g1, . . . , gn) dans ce conseil
méthodologique). Pour un endomorphisme, dans la grande majorité des cas, on utilise la même base pour
l’espace de départ et celui d’arrivé.

— On calcule f(e1) et on écrit le résultat obtenu sous la forme : f(e1) = ✷g1 +✷g2 + . . . +✷gn.
Les « boites » doivent contenir un nombre réel ou complexe. On peut trouver ces nombres de tête ou alors « par
le calcul » (cf. méthode « déterminer les coordonnées d’un vecteur » dans le chapitre « Espaces vectoriels »).

— On effectue, successivement, la même chose pour f(e2) puis f(e3), . . ., f(ep).
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— On construit alors la matrice MatBE ,BG
(f) en la remplissant une colonne après l’autre : dans la première

colonne on met les coordonnées de f(e1) dans la base BG, dans la deuxième colonne les coordonnées de f(e2)
dans la base BG, . . .

Exemple 12 :

Soit f l’endomorphisme de R
3 défini par : f(x1, x2, x3) = (x1 − x3, 2x1 + x2 − 3x3,−x2 + 2x3). On cherche ici

la matrice de f dans la base canonique B = (e1, e2, e3) de R
3.

Première étape : Je calcule f(e1), f(e2) et f(e3) et j’exprime chacun de ces trois vecteurs en fonction de e1, e2,
e3.

f(e1) = (1− 0, 2 × 1 + 0− 3× 0,−0 + 2× 0) = (1, 2, 0) = 1× e1 + 2× e2
f(e2) = (0, 1,−1) = e2 − e3
f(e3) = (−1,−3, 2) = −e1 − 3e2 + 2e3
Deuxième étape : Je construis la matrice dans laquelle je mets dans chaque colonne les coordonnées des f(ei).

On a donc :

MatB(f) =





1 0 −1
2 1 −3
0 −1 2





Exemple 13 :

On considère l’application linéaire f de R
2 dans R2[X] définie par f(a, b) = (a+2b)X2 − bX+a, B1 = (e1, e2)

la base canonique de R
2 et B2 la base canonique de R2[X].

On cherche la matrice de f relative aux bases B1 et B2.
Première étape : On a
f(e1) = f(1, 0) = X2 + 1 = 1× 1 + 0×X + 1×X2.
f(e2) = f(0, 1) = 2X2 −X = 0× 1 + (−1)×X + 2×X2.

Deuxième étape : On a donc : MatB1,B2
(f) =





1 0
0 −1
1 2



 .

Exemple 14 :

On reprend l’application linéaire de l’exemple précédent. Déterminons maintenant la matrice de f relative aux
bases B3 = ((1, 2), (2, 1)) et B4 = (X2,X(X − 1), (X − 1)2).

On a tout d’abord f(1, 2) = 5X2 − 2X + 1. On doit exprimer ce résultat comme une combinaison linéaire des
vecteurs de la base B4. On cherche donc a, b et c tels que

5X2 − 2X + 1 = aX2 + bX(X − 1) + c(X − 1)2 ⇔







a = 4
b = 0
c = 1

Donc f(1, 2) = 4X2 + 0X(X − 1) + (X − 1)2.
De même, on trouve que f(2, 1) = 4X2 −X + 2 = 5X2 − 3X(X − 1) + 2(X − 1)2.

Donc MatB3,B4
(f) =





4 5
0 −3
1 2



.

Conseils méthodologiques : Je dois savoir déterminer une expression explicite de f(−→u ) à l’aide uniquement
de la matrice de f relative à des bases données.

Exemple 15 :

Soit f l’endomorphisme de R
3 dont la matrice dans la base canonique de R

3 est A =





−1 2 −1
−4 5 −3
−2 2 −1



. On

cherche à répondre à la question « Exprimer f(x, y, z) en fonction de x, y et z. »
Soit Bc = (e1, e2, e3) la base canonique de R

3.
D’après la définition de la matrice associé à un endomorphisme on peut écrire :

f(e1) = −e1 − 4a2 − 2e3
f(e2) = 2e1 + 5e2 + 2e3
f(e3) = −e1 − 3e2 − e3
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Donc pour tout (x, y, z) ∈ R
3 comme on a (x, y, z) = xe1 + ye2 + ze3 on peut écrire :

f(x, y, z) = f(xe1 + ye2 + ze3)

= xf(e1) + yf(e2) + zf(e3)

= x(−e1 − 4e2 − 2e3) + y(2e1 + 5e2 + 2e3) + z(−e1 − 3e2 − e3)

= (−x+ 2y − z)e1 + (−4x+ 5y − 3z)e2 + (−2x+ 2y − z)e3

= (−x+ 2y − z,−4x+ 5y − 3z,−2x + 2y − z)

Exemple 16 :

Soit f l’endomorphisme de R2[X] dont la matrice dans la base canonique de R2[X] est A =





3 1 0
−3 0 1
1 0 0



.

Soit Bc = (1,X,X2) la base canonique de R2[X].
On considère le polynôme Q = 3X2 − 2X + 1. On souhaite calculer f(Q).
On remarque que f(Q) = f(3X2 − 2X + 1) = 3f(X2)− 2f(X) + f(1) car f est linéaire.
Or, d’après la définition de la matrice associé à un endomorphisme on peut écrire :

f(1) = 3× 1 + (−3)×X + 1×X2 = 3− 3X +X2

f(X) = 1× 1 + 0×X + 0×X2 = 1

f(X2) = 0× 1 + 1×X + 0×X2 = X

Donc f(Q) = 3f(X2)− 2f(X) + f(1) = 3X − 2 + 3− 3X +X2 = X2 + 1.

Exemple 17 : Plus dur

On note u = (1, 2) et v = (−2, 1) deux vecteurs de R
2. On considère f l’endomorphisme de R

2 dont la matrice

relative à la base (u, v) est A =

(
4 0
0 −3

)

. Exprimer f(x, y) en fonction de x et y.

La matrice A étant la matrice relative à la base (u, v) pour pouvoir l’utiliser pour calculer f(x, y) il faut
déterminer les coordonnées de (x, y) dans la base (u, v).

Pour cela on écrit :

(x, y) = au+ bv ⇔

{
x = a− 2b
y = 2a+ b

⇔







a =
x+ 2y

5

b =
−2x+ y

5

Donc, on a

f(x, y) = f

(
x+ 2y

5
u+

−2x+ y

5
v

)

=
x+ 2y

5
f(u) +

−2x+ y

5
f(v) linéarité de f

=
x+ 2y

5
× 4u+

−2x+ y

5
× (−3v) d’après la matrice A

=
1

5
(−8x+ 14y, 14x + 13y)

On a donc, pour tout (x, y) ∈ R
2, f(x, y) =

1

5
(−8x+ 14y, 14x + 13y).

Théorème 6
Soit f ∈ L (E,G). Pour tout −→x ∈ E et −→y ∈ G, on note X = MatBE

(−→x ) et Y = MatBG
(−→y ). On note de plus

A la matrice de f relativement aux bases BE et BG.
Alors on a : −→y = f(−→x ) ⇔ Y = AX.

Cours BCPST2 Page 13 Applications linéaires



Démonstration :

Soient −→x ∈ E et −→y ∈ G. On note X = MatBE
(−→x ) =






x1
...
xp




, Y = MatBG

(−→y ) =






y1
...
yn




, et enfin

A = (ai,j)i∈J1;nK,j∈J1;pK.
— =⇒ : On suppose que −→y = f(−→x ).

On a donc :

−→y = f(−→x ) = f

(
p
∑

k=1

xk
−→ek

)

=
f linéaire

p
∑

k=1

xkf (−→ek) =

p
∑

k=1

xk

n∑

i=1

ai,k
−→gi par définition de la matrice A

=
n∑

i=1

(
p
∑

k=1

ai,kxk

)

−→gi

Or on a aussi −→y =

n∑

i=1

yi
−→gi , donc par unicité des coordonnées dans une base :

∀i ∈ J1;nK, yi =

p
∑

k=1

ai,kxk, et donc Y = AX.

— ⇐= : On suppose que Y = AX. On a alors : ∀i ∈ J1;nK, yi =
p
∑

k=1

ai,kxk.

Donc

f(−→x ) = f

(
p
∑

k=1

xk
−→ek

)

=
f linéaire

p
∑

k=1

xkf (−→ek) =

p
∑

k=1

xk

n∑

i=1

ai,k
−→gi par définition de la matrice A

=

n∑

i=1

(
p
∑

k=1

ai,kxk

)

−→gi =

n∑

i=1

yi
−→gi =

−→y

On a donc bien f(−→x ) = −→y .

✷

Conseils méthodologiques : Cette propriété est particulière utile pour résoudre des équation du type f(−→u ) = ...
lorsqu’on connait uniquement la matrice de f relative à des bases données.

Exemple 18 :

Soit f l’endomorphisme de R2[X] dont la matrice dans la base canonique de R2[X] est A =





3 1 0
−3 0 1
1 0 0



.

Déterminons le noyau de f − idR2[X].
On sait que ker(f − idR2[X]) = {P ∈ R2[X]/(f − idR2[X])(P ) = 0} = {P ∈ R2[X]/f(P ) − P = 0}. Or, si on

note P = aX2 + bX + c, on a :

f(P )− P = 0 ⇔ MatBc
(f(P )− P ) = MatBc

(0)

⇔ MatBc
(f)× MatBc

(P )− MatBc
(P ) =





0
0
0





⇔ A×





c
b
a



−





c
b
a



 =





0
0
0





⇔







2c+ b = 0
−3c− b+ a = 0
c− a = 0

⇔







b = −2c
0 = 0
a = c.

Donc ker(f − idR2[X]) = {cX2 − 2cX + c/c ∈ R} = Vect((X − 1)2).
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3 Propriétés

Propriété 14
Soient f et g deux morphismes de E dans G et λ ∈ R. Alors on a :

MatBE ,BG
(f + g) = MatBE ,BG

(f) + MatBE ,BG
(g);

MatBE ,BG
(λf) = λMatBE ,BG

(f).

Propriété 15
Soit H un autre espace vectoriel de dimension finie muni d’une base BH . Soient aussi f ∈ L (E,G) et
g ∈ L (G,H). Alors on a :

MatBE ,BH
(g ◦ f) = MatBG,BH

(g) × MatBE ,BG
(f).

Propriété 16
Soit f ∈ L (E,G) avec dim(E) = dim(G) et M sa matrice relative aux bases BE et BG. Alors f est bijectif si,

et seulement si, M est inversible et dans ce cas M−1 est la matrice de f−1 relativement aux bases BG et BE .

Conseils méthodologiques :

Pour savoir si un morphisme est bijectif il suffit de regarder si sa matrice associée (dans n’importe quelle base)
est inversible.

Exemple 19 :

Soit f l’application linéaire de R3[X] dans R
4 définie par :

f(P ) =
(

P (0), P ′(1), P ′′(2), P (3)(3)
)

.

On a alors :

f(1) = (1, 0, 0, 0) = 1× (1, 0, 0, 0) + 0× (0, 1, 0, 0) + 0× (0, 0, 1, 0) + 0× (0, 0, 0, 1)

f(X) = (0, 1, 0, 0) = 0× (1, 0, 0, 0) + 1× (0, 1, 0, 0) + 0× (0, 0, 1, 0) + 0× (0, 0, 0, 1)

f(X2) = (0, 2, 2, 0) = 0× (1, 0, 0, 0) + 2× (0, 1, 0, 0) + 2× (0, 0, 1, 0) + 0× (0, 0, 0, 1)

f(X3) = (0, 3, 12, 6) = 0× (1, 0, 0, 0) + 3× (0, 1, 0, 0) + 12× (0, 0, 1, 0) + 6× (0, 0, 0, 1).

Donc la matrice de f relative aux bases canoniques des espaces considérés est







1 0 0 0
0 1 2 3
0 0 2 12
0 0 0 6







.

On remarque que cette matrice est triangulaire sans 0 sur la diagonale donc elle est inversible et ainsi f est un
isomorphisme.

4 Changement de base pour les endomorphismes

Propriété 17
On considère B et B

′ deux bases de l’espace vectoriel E et f un endomorphisme de E. Alors on a :

MatB(f) = PB,B′ × MatB′(f)× P−1
B,B′ .

Définition 6
Soit A et B deux matrices de Mn(K). Lorsqu’il existe une matrice P inversible telle que A = PBP−1, on dit
que les matrices A et B sont semblables.

Remarque :

Deux matrices associées à un même endomorphisme mais relatives à deux bases différentes sont donc semblables.
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Propriété 18
Deux matrices sont semblables si, et seulement si, elles sont la matrice d’un même endomorphisme relatives à
deux bases différentes.

Remarque :

Nous verrons en exercice une application de cette propriété.

5 Noyau et image d’une matrice

Toute matrice A ∈ Mn,p(K) peut être vue comme la matrice relative aux bases canoniques de K
p et K

n de
l’application linéaires f ∈ L (Kp,Kn) définie par :

f(x1, . . . , xp) =





p
∑

j=1

a1,jxj,

p
∑

j=1

a2,jxj , . . . ,

p
∑

j=1

an,jxj



 .

Ce lien très fort qui existe entre applications linéaires et matrices conduit aux définitions suivantes :

Définition 7
Soit A ∈ Mn,p(K).

— On appelle noyau de A l’ensemble : ker(A) = {X ∈ Mp,1(K)/AX = 0}.
— On appelle image de A l’ensemble : Im(A) = {AX / X ∈ Mp,1(K)}.

Propriété 19
Soit A ∈ Mn,p(K).

— ker(A) est un sous-espace vectoriel de Mp,1(K).
— Im(A) est un sous-espace vectoriel de Mn,1(K).

Propriété 20

Soit A ∈ Mn(K). A est inversible ⇔ ker(A) =












0
...
0












.

Propriété 21
Soit A ∈ Mn,p(K). Alors rg(A) = dim(Im(A)).

Propriété 22
Soit A ∈ Mn,p(K) et f ∈ L (E,G) tel que A = MatBE ,BG

(f). Alors :

rg(A) = rg(f) et dim(ker(A)) = dim(ker(f)).

Propriété 23
Deux matrices semblables ont le même rang.

Théorème 7 : Théorème du rang pour les matrices
Soit A ∈ Mn,p(K). Alors on a

dim(ker(A)) + rg(A) = p.
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