INTERROGATION NO 9

QUESTION 1:

Définir ce qu'est la fonction de répartition d'une VAR X.

On appelle fonction de répartition de X l'application $F_X : \mathbb{R} \to \mathbb{R}$ définie par :

$$\forall t \in \mathbb{R}, \qquad F_X(t) = P(X \leqslant t).$$

QUESTION 2:

Énoncer la propriété de croissance de l'espérance pour les VAR.

Si X et Y sont deux variables aléatoires admettant une espérance et telles que $\forall \omega \in \Omega, X(\omega) \leq Y(\omega)$. Alors $E(X) \leq E(Y)$.

QUESTION 3:

Définir ce qu'est l'espérance d'une VAR discrète.

Soit X une VAR discrète.

On dit que X admet une espérance, ou que l'espérance de X existe, si, et seulement si, la série $\sum_{x \in X(x)} xP(X=x)$ est absolument convergente.

On appelle alors **espérance de** X, le réel $E(X) = \sum_{x \in X(\Omega)} xP(X = x)$.

QUESTION 4:

Énoncer la formule de transfert pour une VAR discrète.

Soit X une VAR discrète et soit g une fonction définie au moins sur $X(\Omega)$ et à valeurs dans \mathbb{R} .

Alors la variable aléatoire réelle g(X) admet une espérance si, et seulement si, la série $\sum_{x \in X(\Omega)} g(x)P(X=x)$

est absolument convergente et dans ce cas, on a :

$$E(g(X)) = \sum_{x \in X(\Omega)} g(x)P(X = x).$$

Interrogation	
n^{o}	
0	

Notation	$X(\Omega)$	$P(X=x)$ avec $x \in X(\Omega)$	Espérance	Variance
$\mathscr{U}(\llbracket 1;n \rrbracket) \ (n \in \mathbb{N}^*)$	$X(\Omega) = [\![1;n]\!]$	$\forall k \in X(\Omega), \ P(X=k) = \frac{1}{n}$	$E(X) = \frac{n+1}{2}$	Hors programme
$\mathscr{B}(p)\ (p\in[0;1])$	$X(\Omega) = \{0; 1\}$	P(X = 0) = 1 - p et P(X = 1) = p	E(X) = p	V(X) = p(1-p)
$\mathcal{B}(n,p) \ (n \in \mathbb{N}, p \in [0;1])$	$X(\Omega) = [\![0;n]\!]$	$\forall k \in X(\Omega), \ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$	E(X) = np	V(X) = np(1-p)
$\mathscr{G}(p)\ (p\in]0;1[)$	$X(\Omega) = \mathbb{N}^*$	$\forall k \in X(\Omega), \ P(X=k) = p(1-p)^{k-1}$	$E(X) = \frac{1}{p}$	$V(X) = \frac{1 - p}{p^2}$
$\mathscr{P}(\lambda) \ (\lambda \in]0; +\infty[)$	$X(\Omega) = \mathbb{N}$	$\forall k \in X(\Omega), P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$	$E(X) = \lambda$	$V(X) = \lambda$

 $\ensuremath{\mathbf{QUESTION}}$ 5 : Remplir le tableau suivant à l'aide de vos connaissances sur les lois usuelles :