Sujet d'oral Agro-véto 2022

Soit N un entier supérieur ou égal à 2. On considère une urne contenant N boules indiscernables au toucher, numérotées de 1 à N.

On procède à des tirages successifs d'une boule avec remise de la boule dans l'urne avant le tirage suivant.

On note pour tout $k \ge 1$, X_k le numéro obtenu au k-ième tirage, et Z_k le nombre de numéros distincts obtenus au cours des k premiers tirages.

- 1. a) Écrire une fonction Python NbDiff(L) prenant en en argument une liste L et qui renvoie le nombre d'éléments distincts présents dans cette liste.
 - b) Écrire une fonction Python Z(N,k) qui, prenant en argument les valeurs de N et k, renvoie une simulation de Z_k .
 - c) Estimer l'espérance de Z_k à l'aide de votre programme, et conjecturer son comportement lorsque :
 - (i) N = 10 et $k \to +\infty$;
 - (ii) k = 10 et $N \to +\infty$;
 - (iii) $N = k \text{ et } N \to +\infty$.
- 2. Déterminer la loi de la variable aléatoire Z_1 et la loi de la variable aléatoire Z_2 . En déduire $E(Z_1)$ et $E(Z_2)$.
- 3. Soit k un entier supérieur ou égal à 1.
 - a) Déterminer $P(Z_k = 1)$ et déterminer $P(Z_k = k)$.
 - b) Montrer, pour tout $\ell \in [1; N]$: $P(Z_{k+1} = \ell) = \frac{\ell}{N} P(Z_k = \ell) + \frac{N \ell + 1}{N} P(Z_k = \ell 1)$.
 - c) En déduire : $E(Z_{k+1}) = \frac{N-1}{N}E(Z_k) + 1$.
- 4. Montrer alors que pour tout $k \ge 1$: $E(Z_k) = N\left(1 \left(\frac{N-1}{N}\right)^k\right)$.
- 5. Déterminer un équivalent de $E(Z_k)$ dans les trois cas suivants, en comparant avec vos résultats numériques de la question 1.c):
 - a) lorsque N est fixé et $k \to +\infty$;
 - b) lorsque k est fixé et $N \to +\infty$;
 - c) lorsque N = k et $N \to +\infty$.

Facultatif: la métaphore de la cantine (ENS).

Dans ce problème il s'agit de caractériser la loi du nombre d'espèces représentées dans un échantillon de n individus, et leurs abondances respectives, à l'aide d'un unique paramètre.

Soit θ un réel strictement positif. Des individus numérotés $1, 2, \ldots, n$, arrivent successivement dans une salle de restaurant contenant une infinité de tables infiniment longues. Le premier individu s'assied à une table au hasard. Pour tout entier $k \ge 1$, lorsque l'individu k+1 arrive, il choisit au hasard un des k convives déjà attablés avec la probabilité $1/(k+\theta)$, et s'assied à la même table, ou occupe une nouvelle table avec la probabilité $\theta/(k+\theta)$.

L'entier K_n désigne le nombre de tables occupées lorsque n convives se sont installés et pour $1 \le i \le n$, on note $q_{n,i} = \mathbb{P}(K_n = i)$. La répartition de ces n convives en K_n tables est une métaphore pour la répartition d'un échantillon de n individus vivants en K_n espèces.

- 1. a) Montrer que : $q_{n+1,1} = \frac{n!}{(n+\theta)(n-1+\theta)\cdots(1+\theta)}$
 - b) Pour tous $2 \leqslant i \leqslant n$, trouver une relation entre $q_{n+1,i}, q_{n,i}$ et $q_{n,i-1}$.
- 2. Soient L_n et P_n les polynômes de degré n suivants

$$P_n = \sum_{i=1}^n q_{n,i} X^i$$
 $L_n = \prod_{i=0}^{n-1} (X+i)$

- a) Donner une relation de récurrence vérifiée par (P_n) .
- b) En déduire que

$$P_n = \frac{L_n(\theta X)}{L_n(\theta)}$$

On admettra que cette équation caractérise la loi de K_n , mais dans la question suivante, on se concentre sur son espérance et sa variance.

- 3. a) Montrer que $\mathbb{E}(K_n) = P'_n(1)$ et en déduire $\mathbb{E}(K_n)$.

 Indication: On pourra prendre le logarithme de P_n .
 - b) Montrer que $\mathbb{V}(K_n) = P_n''(1) + P_n'(1) (P_n'(1))^2$ et calculer $\mathbb{V}(K_n)$.
- 4. Dans cette question, on cherche à obtenir directement les résultats de la question précédente.
 - a) Montrer que $K_n = \sum_{i=1}^n \varepsilon_i$ où les $(\varepsilon_i)_{i=1,\dots,n}$ sont des variables de Bernoulli indépendantes dont on précisera les probabilités de succès respectives.
 - b) En déduire $\mathbb{E}(K_n)$ et $\mathbb{V}(K_n)$.
- 5. a) Établir la double inégalité

$$1 + \int_{1}^{n} \frac{\theta}{\theta + x} dx \leq \mathbb{E} (K_n) \leq 1 + \int_{0}^{n-1} \frac{\theta}{\theta + x} dx$$

- b) Donner un équivalent de $\mathbb{E}(K_n)$ lorsque $n \to \infty$ (et le justifier).
- 6. Étudier la différence $\mathbb{V}(K_n) \mathbb{E}(K_n)$ et en déduire un équivalent de $\mathbb{V}(K_n)$ lorsque $n \to \infty$.